Optimization and interpretation of rule-based classifiers

被引:0
作者
Duch, W [1 ]
Jankowski, N [1 ]
Grabcewski, K [1 ]
Adamczak, R [1 ]
机构
[1] Nicholas Copernicus Univ, Dept Comp Methods, PL-87100 Torun, Poland
来源
INTELLIGENT INFORMATION SYSTEMS | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning methods are frequently used to create rule-based classifiers. For continuous features linguistic variables used in conditions of the rules are defined by membership functions. These linguistic variables should be optimized at the level of single rules or sets of rules. Assuming the Gaussian uncertainty of input values allows to increase the accuracy of predictions and to estimate probabilities of different classes. Detailed interpretation of relevant rules is possible using (probabilistic) confidence intervals. A real life example of such interpretation is given for personality disorders. The approach to optimization and interpretation described here is applicable to any rule-based system.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 13 条
[1]  
BREIMAN L, 1998, NEURAL NETWORKS MACH
[2]   Extraction of logical rules from neural networks [J].
Duch, W ;
Adamczak, R ;
Grabczewski, K .
NEURAL PROCESSING LETTERS, 1998, 7 (03) :211-219
[3]   FEATURE SPACE MAPPING AS A UNIVERSAL ADAPTIVE SYSTEM [J].
DUCH, W ;
DIERCKSEN, GHF .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 87 (03) :341-371
[4]  
DUCH W, 1997, 3 C NEUR NETW KUL PO, P65
[5]  
DUCH W, 1999, P ENG APPL NEUR NETW, P45
[6]  
DUCH W, 1999, NEURAL COMPUTING SUR, V2, P639
[7]  
DUCH W, IN PRESS IEEE T NEUR
[8]  
DUCH W, 1999, INT C NEUR INF PROC, V2, P616
[9]  
DUCH W, 1999, METODY UCZENIA MASZY
[10]  
DUCH W, 1999, INTELLIGENT INFORMAT, V8, P22