Multi-resolution-analysis scheme for uncertainty quantification in chemical systems

被引:61
作者
Le Maitre, O. P. [1 ]
Najm, H. N.
Pebay, P. P.
Ghanem, R. G.
Knio, O. M.
机构
[1] Univ Evry, CNRS, LMEE & LIMSI, F-91020 Evry, France
[2] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA
[3] Univ So Calif, Dept Mech & Aerosp Engn, Los Angeles, CA 90089 USA
[4] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
关键词
D O I
10.1137/050643118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a multi-resolution approach for the propagation of parametric uncertainty in chemical systems. It is motivated by previous studies where Galerkin formulations of Wiener-Hermite expansions were found to fail in the presence of steep dependences of the species concentrations with regard to the reaction rates. The multi-resolution scheme is based on representation of the uncertain concentration in terms of compact polynomial multi-wavelets, allowing for the control of the convergence in terms of polynomial order and resolution level. The resulting representation is shown to greatly improve the robustness of the Galerkin procedure in presence of steep dependences. However, this improvement comes with a higher computational cost which drastically increases with the number of uncertain reaction rates. To overcome this drawback an adaptive strategy is proposed to control locally ( in the parameter space) and in time the resolution level. The efficiency of the method is demonstrated for an uncertain chemical system having eight random parameters.
引用
收藏
页码:864 / 889
页数:26
相关论文
共 20 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Adaptive solution of partial differential equations in multiwavelet bases [J].
Alpert, B ;
Beylkin, G ;
Gines, D ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (01) :149-190
[3]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[4]  
[Anonymous], 1975, ACM T MATH SOFTWARE, DOI DOI 10.1145/355626.355636
[5]   VODE - A VARIABLE-COEFFICIENT ODE SOLVER [J].
BROWN, PN ;
BYRNE, GD ;
HINDMARSH, AC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05) :1038-1051
[6]   THE ORTHOGONAL DEVELOPMENT OF NON-LINEAR FUNCTIONALS IN SERIES OF FOURIER-HERMITE FUNCTIONALS [J].
CAMERON, RH ;
MARTIN, WT .
ANNALS OF MATHEMATICS, 1947, 48 (02) :385-392
[7]   Numerical challenges in the use of polynomial chaos representations for stochastic processes [J].
Debusschere, BJ ;
Najm, HN ;
Pébay, PP ;
Knio, OM ;
Ghanem, RG ;
Le Maître, OP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) :698-719
[8]   Protein labeling reactions in electrochemical microchannel flow:: Numerical simulation and uncertainty propagation [J].
Debusschere, BJ ;
Najm, HN ;
Matta, A ;
Knio, OM ;
Ghanem, RG ;
Le Maître, OP .
PHYSICS OF FLUIDS, 2003, 15 (08) :2238-2250
[9]   The nonlinear Gaussian spectrum of log-normal stochastic processes and variables [J].
Ghanem, R .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (04) :964-973
[10]  
Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4