Universal axial algebras and a theorem of Sakuma

被引:47
作者
Hall, J. I. [1 ]
Rehren, F. [2 ]
Shpectorov, S. [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48840 USA
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
Monster group; Nonassociative algebras; Idempotents; Fusion rules; CONFORMAL VECTORS;
D O I
10.1016/j.jalgebra.2014.08.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first half of this paper, we define axial algebras: nonassociative commutative algebras generated by axes, that is, semisimple idempotents-the prototypical example of which is Griess' algebra [2] for the Monster group. When multiplication of eigenspaces of axes is controlled by fusion rules, the structure of the axial algebra is determined to a large degree. We give a construction of the universal Frobenius axial algebra on n generators with specified fusion rules, of which all n-generated Frobenius axial algebras with the same fusion rules are quotients. In the second half, we realise this construction in the Majorana/Ising/Vir(4, 3)-case on 2 generators, and deduce a result generalising Sakuma's theorem in VOAs [13]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 424
页数:31
相关论文
共 14 条
[1]  
[Anonymous], GAP-Groups, Algorithms, and Programming, Version 4.12dev
[3]   A SIMPLE CONSTRUCTION FOR THE FISCHER-GRIESS MONSTER GROUP [J].
CONWAY, JH .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :513-540
[4]  
DIFRANCESCO P, 1996, CONFORMAL FIELD THEO
[5]  
Frenkel I, 1998, VERTEX OPERATOR ALGE
[6]   FUSION RULES IN CONFORMAL FIELD-THEORY [J].
FUCHS, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1994, 42 (01) :1-48
[7]   THE FRIENDLY GIANT [J].
GRIESS, RL .
INVENTIONES MATHEMATICAE, 1982, 69 (01) :1-102
[8]  
Hall Jack., 2014, PREPRINT
[9]  
Ivanov AA, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511576812
[10]   Majorana representations of the symmetric group of degree 4 [J].
Ivanov, A. A. ;
Pasechnik, D. V. ;
Seress, A. ;
Shpectorov, S. .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2432-2463