Identifying single-cell molecular programs by stochastic profiling

被引:0
作者
Janes, Kevin A. [1 ,2 ]
Wang, Chun-Chao [2 ]
Holmberg, Karin J. [2 ]
Cabral, Kristin [3 ,4 ]
Brugge, Joan S. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Univ Virginia, Dept Biomed Engn, Charlottesville, VA USA
[3] Childrens Hosp, Mol Genet Core Facil, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Boston, MA USA
关键词
GENE-EXPRESSION; BREAST-CANCER; ARCHITECTURE; REVEALS; PROTEIN; STRESS; NOISE;
D O I
10.1038/NMETH.1442
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
cells in tissues can be morphologically indistinguishable yet show molecular expression patterns that are remarkably heterogeneous. here we describe an approach to comprehensively identify co-regulated, heterogeneously expressed genes among cells that otherwise appear identical. the technique, called stochastic profiling, involves repeated, random selection of very small cell populations via laser-capture microdissection followed by a customized single-cell amplification procedure and transcriptional profiling. Fluctuations in the resulting gene-expression measurements are then analyzed statistically to identify transcripts that are heterogeneously coexpressed. We stochastically profiled matrix-attached human epithelial cells in a three-dimensional culture model of mammary-acinar morphogenesis. of 4,557 transcripts, we identified 547 genes with strong cell-to-cell expression differences. clustering of this heterogeneous subset revealed several molecular 'programs' implicated in protein biosynthesis, oxidative-stress responses and NF-kappa B signaling, which we independently confirmed by RNA fluorescence in situ hybridization. thus, stochastic profiling can reveal single-cell heterogeneities without the need to measure expression in individual cells.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 30 条
  • [1] Modeling T cell antigen discrimination based on feedback control of digital ERK responses
    Altan-Bonnet, G
    Germain, RN
    [J]. PLOS BIOLOGY, 2005, 3 (11) : 1925 - 1938
  • [2] Increased cell-to-cell variation in gene expression in ageing mouse heart
    Bahar, Rumana
    Hartmann, Claudia H.
    Rodriguez, Karl A.
    Denny, Ashley D.
    Busuttil, Rita A.
    Dolle, Martijn E. T.
    Calder, R. Brent
    Chisholm, Gary B.
    Pollock, Brad H.
    Klein, Christoph A.
    Vijg, Jan
    [J]. NATURE, 2006, 441 (7096) : 1011 - 1014
  • [3] Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels
    Bengtsson, M
    Ståhlberg, A
    Rorsman, P
    Kubista, M
    [J]. GENOME RESEARCH, 2005, 15 (10) : 1388 - 1392
  • [4] BRADY G, 1993, METHOD ENZYMOL, V225, P611
  • [5] Transcriptome-wide noise controls lineage choice in mammalian progenitor cells
    Chang, Hannah H.
    Hemberg, Martin
    Barahona, Mauricio
    Ingber, Donald E.
    Huang, Sui
    [J]. NATURE, 2008, 453 (7194) : 544 - U10
  • [6] Modelling glandular epithelial cancers in three-dimensional cultures
    Debnath, J
    Brugge, JS
    [J]. NATURE REVIEWS CANCER, 2005, 5 (09) : 675 - 688
  • [7] Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner
    Debnath, J
    Walker, SJ
    Brugge, JS
    [J]. JOURNAL OF CELL BIOLOGY, 2003, 163 (02) : 315 - 326
  • [8] Laser capture microdissection
    EmmertBuck, MR
    Bonner, RF
    Smith, PD
    Chuaqui, RF
    Zhuang, ZP
    Goldstein, SR
    Weiss, RA
    Liotta, LA
    [J]. SCIENCE, 1996, 274 (5289) : 998 - 1001
  • [9] The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes
    Ferrell, JE
    Machleder, EM
    [J]. SCIENCE, 1998, 280 (5365) : 895 - 898
  • [10] Noise minimization in eukaryotic gene expression
    Fraser, HB
    Hirsh, AE
    Giaever, G
    Kumm, J
    Eisen, MB
    [J]. PLOS BIOLOGY, 2004, 2 (06): : 834 - 838