Dispersion and shape engineered plasmonic nanosensors

被引:171
作者
Jeong, Hyeon-Ho [1 ,2 ]
Mark, Andrew G. [1 ]
Alarcon-Correa, Mariana [1 ,3 ]
Kim, Insook [1 ,3 ]
Oswald, Peter [1 ]
Lee, Tung-Chun [1 ,4 ,5 ]
Fischer, Peer [1 ,3 ]
机构
[1] Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany
[2] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[3] Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
[4] UCL, UCL Inst Mat Discovery, Christopher Ingold Bldg,20 Gordon St, London WC1H 0AJ, England
[5] UCL, Dept Chem, Christopher Ingold Bldg,20 Gordon St, London WC1H 0AJ, England
基金
欧洲研究理事会;
关键词
RESONANCE; GOLD; METAMATERIALS; SENSITIVITY; NANOPARTICLES; BIOSENSORS; FUTURE; ARRAYS; SIZE;
D O I
10.1038/ncomms11331
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nmRIU(-1) at lambda = 921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[3]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[4]   Tuning the acoustic frequency of a gold nanodisk through its adhesion layer [J].
Chang, Wei-Shun ;
Wen, Fangfang ;
Chakraborty, Debadi ;
Su, Man-Nung ;
Zhang, Yue ;
Shuang, Bo ;
Nordlander, Peter ;
Sader, John E. ;
Halas, Naomi J. ;
Link, Stephan .
NATURE COMMUNICATIONS, 2015, 6
[5]   Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing [J].
Charles, Denise E. ;
Aherne, Damian ;
Gara, Matthew ;
Ledwith, Deirdre M. ;
Gun'ko, Yurii K. ;
Kelly, John M. ;
Blau, Werner J. ;
Brennan-Fournet, Margaret E. .
ACS NANO, 2010, 4 (01) :55-64
[6]   Shape- and size-dependent refractive index sensitivity of gold nanoparticles [J].
Chen, Huanjun ;
Kou, Xiaoshan ;
Yang, Zhi ;
Ni, Weihai ;
Wang, Jianfang .
LANGMUIR, 2008, 24 (10) :5233-5237
[7]   Formula for the viscosity of a glycerol-water mixture [J].
Cheng, Nian-Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (09) :3285-3288
[8]   Optical rotation of achiral compounds [J].
Claborn, Kacey ;
Isborn, Christine ;
Kaminsky, Werner ;
Kahr, Bart .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (31) :5706-5717
[9]   Colorimetric Plasmon Resonance Imaging Using Nano Lycurgus Cup Arrays [J].
Gartia, Manas Ranjan ;
Hsiao, Austin ;
Pokhriyal, Anusha ;
Seo, Sujin ;
Kulsharova, Gulsim ;
Cunningham, Brian T. ;
Bond, Tiziana C. ;
Liu, Gang Logan .
ADVANCED OPTICAL MATERIALS, 2013, 1 (01) :68-76
[10]   Plasmonic nanohelix metamaterials with tailorable giant circular dichroism [J].
Gibbs, J. G. ;
Mark, A. G. ;
Eslami, S. ;
Fischer, P. .
APPLIED PHYSICS LETTERS, 2013, 103 (21)