Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam

被引:59
作者
Gilboa, Tal [1 ]
Zrehen, Adam [1 ]
Girsault, Arik [1 ]
Meller, Amit [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biomed Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
SOLID-STATE NANOPORES; DNA TRANSLOCATION; PLASMONIC NANOPORES; NUCLEOTIDES; MOLECULES; ARRAYS; LIGHT; ION;
D O I
10.1038/s41598-018-28136-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state nanopores (ssNPs) are extremely versatile single-molecule sensors and their potential have been established in numerous biomedical applications. However, the fabrication of ssNPs remains the main bottleneck to their widespread use. Herein, we introduce a rapid and localizable ssNPs fabrication method based on feedback-controlled optical etching. We show that a focused blue laser beam irreversibly etches silicon nitride (SiNx) membranes in solution. Furthermore, photoluminescence (PL) emitted from the SiNx is used to monitor the etching process in real-time, hence permitting rate adjustment. Transmission electron microscopy (TEM) images of the etched area reveal an inverted Gaussian thickness profile, corresponding to the intensity point spread function of the laser beam. Continued laser exposure leads to the opening of a nanopore, which can be controlled to reproducibly fabricate nanopores of different sizes. The optically-formed ssNPs exhibit electrical noise on par with TEM-drilled pores, and translocate DNA and proteins readily. Notably, due to the localized thinning, the laser-drilled ssNPs exhibit highly suppressed background PL and improved spatial resolution. Given the total control over the nanopore position, this easily implemented method is ideally suited for electro-optical sensing and opens up the possibility of fabricating large nanopore arrays in situ.
引用
收藏
页数:10
相关论文
共 50 条
[11]  
Di Fiori N, 2013, NAT NANOTECHNOL, V8, P946, DOI [10.1038/NNANO.2013.221, 10.1038/nnano.2013.221]
[12]   Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom [J].
Feng, J. ;
Liu, K. ;
Graf, M. ;
Lihter, M. ;
Bulushev, R. D. ;
Dumcenco, D. ;
Alexander, D. T. L. ;
Krasnozhon, D. ;
Vuletic, T. ;
Kis, A. ;
Radenovic, A. .
NANO LETTERS, 2015, 15 (05) :3431-3438
[13]   Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits [J].
Frament, Cameron M. ;
Dwyer, Jason R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23315-23321
[14]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[15]   Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores [J].
Gilboa, Tal ;
Torfstein, Chen ;
Juhasz, Matyas ;
Grunwald, Assaf ;
Ebenstein, Yuval ;
Weinhold, Elmar ;
Meller, Amit .
ACS NANO, 2016, 10 (09) :8861-8870
[16]  
Goldstein L., 1979, J BIOL CHEM, V254, P987
[17]   Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores [J].
Han, Anpan ;
Creus, Marc ;
Schurmann, Gregor ;
Linder, Vincent ;
Ward, Thomas R. ;
de Rooij, Nico F. ;
Staufer, Urs .
ANALYTICAL CHEMISTRY, 2008, 80 (12) :4651-4658
[18]   Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution [J].
Healy, Ken ;
Ray, Vishva ;
Willis, Lauren J. ;
Peterman, Neil ;
Bartel, John ;
Drndic, Marija .
ELECTROPHORESIS, 2012, 33 (23) :3488-3496
[19]   BASIC MECHANISMS IN LASER ETCHING AND DEPOSITION [J].
HOULE, FA .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1986, 41 (04) :315-330
[20]   Nanopore analytics: sensing of single molecules [J].
Howorka, Stefan ;
Siwy, Zuzanna .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (08) :2360-2384