Hecke algebras, difference operators, and quasi-symmetric functions

被引:45
作者
Hivert, F [1 ]
机构
[1] Univ Marne la Vallee, Inst Gaspard Monge, F-77454 Marne La Vallee 2, France
关键词
D O I
10.1006/aima.1999.1901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new action of the symmetric group and its Hecke algebra on polynomial rings whose invariants are exactly the quasi-symmetric polynomials. We interpret this construction in terms of a Demazure character Formula for the irreducible polynomial modules of a degenerate quantum group. We use the action of the generic Hecke algebras to define quasi-symmetric and noncommutative analogues of Hall-Littlewood functions. We show that these generalized functions share many combinatorial properties with the classical ones.
引用
收藏
页码:181 / 238
页数:58
相关论文
共 50 条
[11]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[12]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[13]  
Green JA., 1955, T AM MATH SOC, V80, P402
[14]  
HALL P, 1972, COMBINATORICA, P70
[15]  
HIVERT F, 1998, AFFINE HECKE ALGEBRA
[16]   SPECIALIZATION THEOREM FOR CERTAIN WEYL GROUP REPRESENTATIONS AND AN APPLICATION TO GREEN POLYNOMIALS OF UNITARY GROUPS [J].
HOTTA, R ;
SPRINGER, TA .
INVENTIONES MATHEMATICAE, 1977, 41 (02) :113-127
[18]  
Kirillov A.N., 1986, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V155, P194, DOI [10.1007/BF01247088, DOI 10.1007/BF01247088]
[19]  
Klyachko Aleksandr Anatolevich, 1974, Sibirsk. Mat. Z., V15, P1296
[20]   Noncommutative symmetric functions IV: Quantum linear groups and hecke algebras at q = 0 [J].
Krob, D ;
Thibon, JY .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (04) :339-376