Porting HEP Parameterized Calorimeter Simulation Code to GPUs

被引:4
作者
Dong, Zhihua [1 ]
Gray, Heather [2 ,3 ]
Leggett, Charles [2 ]
Lin, Meifeng [1 ]
Pascuzzi, Vincent R. [2 ]
Yu, Kwangmin [1 ]
机构
[1] Brookhaven Natl Lab, Upton, NY USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[3] Univ California, Berkeley, CA USA
来源
FRONTIERS IN BIG DATA | 2021年 / 4卷
关键词
large hadron collider; high performance computing; gpu; CUDA; kokkos; performance portability; particle physics;
D O I
10.3389/fdata.2021.665783
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The High Energy Physics (HEP) experiments, such as those at the Large Hadron Collider (LHC), traditionally consume large amounts of CPU cycles for detector simulations and data analysis, but rarely use compute accelerators such as GPUs. As the LHC is upgraded to allow for higher luminosity, resulting in much higher data rates, purely relying on CPUs may not provide enough computing power to support the simulation and data analysis needs. As a proof of concept, we investigate the feasibility of porting a HEP parameterized calorimeter simulation code to GPUs. We have chosen to use FastCaloSim, the ATLAS fast parametrized calorimeter simulation. While FastCaloSim is sufficiently fast such that it does not impose a bottleneck in detector simulations overall, significant speed-ups in the processing of large samples can be achieved from GPU parallelization at both the particle (intra-event) and event levels; this is especially beneficial in conditions expected at the high-luminosity LHC, where extremely high per-event particle multiplicities will result from the many simultaneous proton-proton collisions. We report our experience with porting FastCaloSim to NVIDIA GPUs using CUDA. A preliminary Kokkos implementation of FastCaloSim for portability to other parallel architectures is also described.
引用
收藏
页数:11
相关论文
共 8 条
[1]   The ATLAS Simulation Infrastructure [J].
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Abdelalim, A. A. ;
Abdesselam, A. ;
Abdinov, O. ;
Abi, B. ;
Abolins, M. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adorisio, C. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahmed, H. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. ;
Akimoto, G. ;
Akimov, A. V. ;
Aktas, A. ;
Alam, M. S. ;
Alam, M. A. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Aliyev, M. ;
Allport, P. P. ;
Allwood-Spiers, S. E. ;
Almond, J. ;
Aloisio, A. ;
Alon, R. .
EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (03) :823-874
[2]   The ATLAS Experiment at the CERN Large Hadron Collider [J].
Aad, G. ;
Abat, E. ;
Abdallah, J. ;
Abdelalim, A. A. ;
Abdesselam, A. ;
Abdinov, O. ;
Abi, B. A. ;
Abolins, M. ;
Abramowicz, H. ;
Acerbi, E. ;
Acharya, B. S. ;
Achenbach, R. ;
Ackers, M. ;
Adams, D. L. ;
Adamyan, F. ;
Addy, T. N. ;
Aderholz, M. ;
Adorisio, C. ;
Adragna, P. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahmed, H. ;
Aielli, G. ;
Akesson, P. F. ;
Akesson, T. P. A. ;
Alam, S. M. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Aleppo, M. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexopoulos, T. ;
Alimonti, G. ;
Aliyev, M. ;
Allport, P. P. ;
Allwood-Spiers, S. E. ;
Aloisio, A. ;
Alonso, J. ;
Alves, R. ;
Alviggi, M. G. ;
Amako, K. ;
Amaral, P. ;
Amaral, S. P. ;
Ambrosini, G. ;
Ambrosio, G. .
JOURNAL OF INSTRUMENTATION, 2008, 3
[3]  
Aberle O., 2017, Technical design report, DOI [10.23731/CYRM-2017-004, DOI 10.23731/CYRM-2020-0010, 10.23731/CYRM-2020-0010, DOI 10.23731/CYRM-2017-004]
[4]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[5]  
ATLAS collaboration, 2018, ATL-SOFT-PUB-2018-002
[6]  
ATLAS Collaboration, 2020, J. Instrum, V15, DOI [10.1088/1748-0221/15/04/P04003, DOI 10.1088/1748-0221/15/04/P04003]
[7]  
Calafiura P., 2020, Technical report
[8]   Kokkos: Enabling manycore performance portability through polymorphic memory access patterns [J].
Edwards, H. Carter ;
Trott, Christian R. ;
Sunderland, Daniel .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (12) :3202-3216