eIF2α-ATF4 Pathway Activated by a Change in the Calcium Environment Participates in BCP-Mediated Bone Regeneration

被引:6
|
作者
Xiang, Zichao [1 ,2 ,3 ,4 ]
Wu, Qionghui [1 ,2 ]
Wang, Yu [1 ,2 ,5 ]
Wang, Peng [1 ,2 ]
He, Yingyou [1 ,2 ]
Li, Jihua [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Sch Stomatol, Chengdu 610000, Peoples R China
[2] Sichuan Univ, Natl Clin Res Ctr Oral Dis, Chengdu 610000, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp Stomatol, Sch Stomatol, Sch Med, Hangzhou 310006, Peoples R China
[4] Zhejiang Univ, Sch Med, Key Lab Oral Biomed Res Zhejiang Prov, Hangzhou 310006, Peoples R China
[5] Guizhou Med Univ, Affiliated Stomatol Hosp, Guiyang 550001, Peoples R China
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2021年 / 7卷 / 07期
关键词
endoplasmic reticulum stress; calcium phosphate ceramics; eIF2; alpha-ATF4; pathway; bone regeneration; ENDOPLASMIC-RETICULUM STRESS; PHOSPHATE CERAMIC COMPOSITION; TRANSCRIPTION FACTOR; OSTEOBLAST DIFFERENTIATION; OSTEOGENIC DIFFERENTIATION; CELL DIFFERENTIATION; MOLECULAR-MECHANISM; INVITRO BEHAVIOR; EXPRESSION; ATF4;
D O I
10.1021/acsbiomaterials.0c01802
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Biphasic calcium phosphate (BCP) ceramic is a classic bone void filler and a common basis of new materials for bone defect repair. However, the specific mechanism of BCP in osteogenesis has not been fully elucidated. Endoplasmic reticulum stress (ERs) and the subsequent PERK-eIF2 alpha-ATF4 pathway can be activated by various factors, including trauma and intracellular calcium changes, and therefore worth exploring as a potential mechanism in BCP-mediated bone repair. Herein, a rat lateral femoral epicondyle defect model in vivo and a simulated BCP-mediated calcium environment in vitro were constructed for the analysis of BCP-related osteogenesis and the activation of ERs and the eIF2 alpha-ATF4 pathway. An inhibitor of eIF2 alpha dephosphorylation (salubrinal) was also used to explore the effect of the eIF2 alpha-ATF4 pathway on BCP-mediated bone regeneration. The results showed that the ERs and eIF2 alpha-ATF4 pathway activation were observed during 4 weeks of bone repair, with a rapid but brief increase immediately after artificial defect surgery and a reincrease after 4 weeks with the resorption of BCP materials. Mild ERs and the activated eIF2 alpha induced by the calcium changes mediated by BCP regulated the expression of osteogenic-related proteins and had an important role during the defect repair. In conclusion, the eIF2 alpha-ATF4 pathway activated by a change in the calcium environment participates in BCP-mediated bone regeneration. eIF2 alpha-ATF4 and ERs could provide new directions for further studies on new materials in bone tissue engineering.
引用
收藏
页码:3256 / 3268
页数:13
相关论文
共 50 条
  • [31] Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake
    Kobylewski, Sarah E.
    Henderson, Kimberly A.
    Yamada, Kristin E.
    Eckhert, Curtis D.
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2017, 176 (02) : 278 - 293
  • [32] EIF2α/ATF4 pathway enhances proliferation of mesangial cell via cyclin D1 during endoplasmic reticulum stress in IgA nephropathy
    Lan, Zhixin
    Zhao, Lu
    Peng, Liang
    Wan, Lili
    Liu, Di
    Tang, Chengyuan
    Chen, Guochun
    Liu, Yu
    Liu, Hong
    CLINICAL IMMUNOLOGY, 2023, 257
  • [33] 7-Acetylsinumaximol B Induces Apoptosis and Autophagy in Human Gastric Carcinoma Cells through Mitochondria Dysfunction and Activation of the PERK/eIF2α/ATF4/CHOP Signaling Pathway
    Tsai, Tsung-Chang
    Lai, Kuei-Hung
    Su, Jui-Hsin
    Wu, Yu-Jen
    Sheu, Jyh-Horng
    MARINE DRUGS, 2018, 16 (04):
  • [34] Activation of PERK/eIF2α/ATF4/CHOP branch of endoplasmic reticulum stress response and cooperation between HIF-1α and ATF4 promotes Daprodustat-induced vascular calcification
    Toth, Andrea
    Lente, Greta
    Csiki, David Mate
    Balogh, Eniko
    Szoor, Arpad
    Nagy Jr, Bela
    Jeney, Viktoria
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [35] Oxytocin Suppresses Inflammatory Responses Induced by Lipopolysaccharide through Inhibition of the eIF-2α-ATF4 Pathway in Mouse Microglia
    Inoue, Takayuki
    Yamakage, Hajime
    Tanaka, Masashi
    Kusakabe, Toru
    Shimatsu, Akira
    Satoh-Asahara, Noriko
    CELLS, 2019, 8 (06)
  • [36] Flurochloridone Induced Cell Apoptosis via ER Stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax Signaling Pathways in Mouse TM4 Sertoli Cells
    Zhang, Fen
    Ni, Zhijing
    Zhao, Shuqi
    Wang, Yanna
    Chang, Xiuli
    Zhou, Zhijun
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (08)
  • [37] Endoplasmic Reticulum Stress Response Mediated by the PERK-eIF2α-ATF4 Pathway Is Involved in Osteoblast Differentiation Induced by BMP2
    Saito, Atsushi
    Ochiai, Kimiko
    Kondo, Shinichi
    Tsumagari, Kenji
    Murakami, Tomohiko
    Cavener, Douglas R.
    Imaizumi, Kazunori
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (06) : 4809 - 4818
  • [38] Involvement of the Osteoinductive Factors, Tmem119 and BMP-2, and the ER Stress Response PERK–eIF2α–ATF4 Pathway in the Commitment of Myoblastic into Osteoblastic Cells
    Ken-ichiro Tanaka
    Hiroshi Kaji
    Toru Yamaguchi
    Ippei Kanazawa
    Lucie Canaff
    Geoffrey N. Hendy
    Toshitsugu Sugimoto
    Calcified Tissue International, 2014, 94 : 454 - 464
  • [39] Expression of PERK-eIF2α-ATF4 pathway signaling protein in the progression of hepatic fibrosis in rats
    Luo, Xin-Hua
    Han, Bing
    Chen, Qu
    Guo, Xiao-Ting
    Xie, Ru-Jia
    Yang, Ting
    Yang, Qin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2018, 11 (07): : 3542 - 3550
  • [40] Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure
    Liu, Xudan
    Chen, Yao
    Wang, Huanhuan
    Wei, Yuting
    Yuan, Ye
    Zhou, Qianqian
    Fang, Fang
    Shi, Sainan
    Jiang, Xiaojing
    Dong, Yinqiao
    Li, Xin
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 417