Phonon properties of group IV materials for thermoelectric applications

被引:0
作者
Ogura, Atsushi [1 ,2 ]
Yokogawa, Ryo [1 ,2 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Kawasaki, Kanagawa, Japan
[2] Meiji Univ, Meiji Renewable Energy Lab, Kawasaki, Kanagawa, Japan
来源
2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM) | 2021年
关键词
Phonon; thermoelectric device; group IV materials; GROWTH;
D O I
10.1109/EDTM50988.2021.9420883
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the phonon properties of group IV materials for thermoelectric applications evaluated by Raman spectroscopy and inelastic x-ray scattering technique, which can directly detect phonon energy. The effects of oxidation, interface properties, alloying, etc. on thermal conductivity characteristics were evaluated in detail. The experimental results show that the change of the interface (SiO2/Si) properties and atom position (alloying) for group IV materials dramatically influence on the phonon scattering with respect to the viewpoint of phonon energy.
引用
收藏
页数:3
相关论文
共 17 条
  • [1] An X-ray scattering beamline for studying dynamics
    Baron, AQR
    Tanaka, Y
    Goto, S
    Takeshita, K
    Matsushita, T
    Ishikawa, T
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2000, 61 (03) : 461 - 465
  • [2] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [3] Chung Sylvia Yuk Yee, 2020, ECS Transactions, V98, P533, DOI 10.1149/09805.0533ecst
  • [4] Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease
    Dieffenderfer, James
    Goodell, Henry
    Mills, Steven
    McKnight, Michael
    Yao, Shanshan
    Lin, Feiyan
    Beppler, Eric
    Bent, Brinnae
    Lee, Bongmook
    Misra, Veena
    Zhu, Yong
    Oralkan, Omer
    Strohmaier, Jason
    Muth, John
    Peden, David
    Bozkurt, Alper
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (05) : 1251 - 1264
  • [5] Strain and thermal conductivity in ultrathin suspended silicon nanowires
    Fan, Daniel
    Sigg, Hans
    Spolenak, Ralph
    Ekinci, Yasin
    [J]. PHYSICAL REVIEW B, 2017, 96 (11)
  • [6] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [7] Homogeneous In0.3Ga0.7As crystal growth by the traveling liquidus-zone method
    Kinoshita, K
    Kato, H
    Iwai, M
    Tsuru, T
    Muramatsu, Y
    Yoda, S
    [J]. JOURNAL OF CRYSTAL GROWTH, 2001, 225 (01) : 59 - 66
  • [8] A New Application of Ge1-xSnx: Thermoelectric Materials
    Kurosawa, Masashi
    Imai, Yukihiro
    Iwahashi, Taisei
    Takahashi, Kouta
    Sakashita, Mitsuo
    Nakatsuka, Osamu
    Zaima, Shigeaki
    [J]. SIGE, GE, AND RELATED COMPOUNDS: MATERIALS, PROCESSING, AND DEVICES 8, 2018, 86 (07): : 321 - 328
  • [9] Strain- and Defect-Mediated Thermal Conductivity in Silicon Nanowires
    Murphy, Kathryn F.
    Piccione, Brian
    Zanjani, Mehdi B.
    Lukes, Jennifer R.
    Gianola, Daniel S.
    [J]. NANO LETTERS, 2014, 14 (07) : 3785 - 3792
  • [10] Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material
    Nakamura, Yoshiaki
    Isogawa, Masayuki
    Ueda, Tomohiro
    Yamasaka, Shuto
    Matsui, Hideki
    Kikkawa, Jun
    Ikeuchi, Satoaki
    Oyake, Takafumi
    Hori, Takuma
    Shiomi, Junichiro
    Sakai, Akira
    [J]. NANO ENERGY, 2015, 12 : 845 - 851