Model Predictive Voltage Control for SPMSM Drives With Parameter Robustness Optimization

被引:12
作者
Zhang, Xiaoguang [1 ,2 ]
Wang, Ziwei [2 ]
Zhao, Zhihao [2 ]
Cheng, Ming [1 ]
机构
[1] Southeast Univ, Sch Elect Engn, Nanjing 210096, Peoples R China
[2] North China Univ Technol, Inverter Technol Engn Res Ctr Beijing, Beijing 100144, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2022年 / 8卷 / 03期
基金
中国国家自然科学基金;
关键词
Predictive models; Mathematical models; Inductance; Voltage control; Robustness; Sensitivity; Transportation; Inductance error extraction system; model predictive voltage control (MPVC); parameter sensitivity; WIRELESS POWER TRANSFER; TRANSFER SYSTEMS; MULTIPLE LOADS; OUTPUT VOLTAGE;
D O I
10.1109/TTE.2022.3162240
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the parameter robustness of the model predictive voltage control (MPVC) for SPMSM drives, a robust MPVC scheme is proposed in this article. First, the parameter sensitivity of MPVC is analyzed. Then, according to the reference voltage equation, the reference voltage error model is presented. In this model, only inductance information is included; the resistance and the flux-linkage parameter are avoided. Furthermore, the inductance error extraction system is designed to obtain accurate inductance information. Then, according to the inductance error and reference voltage error model, the accurate reference voltage is obtained by compensating for the reference voltage error in real time. Finally, the proposed method is verified by experiments. Experimental results prove that the proposed method can effectively enhance the robustness of the system and eliminate the negative impact of parameter mismatch.
引用
收藏
页码:3151 / 3163
页数:13
相关论文
共 29 条
  • [1] Wireless Power Transmission With Self-Regulated Output Voltage for Biomedical Implant
    Ahn, Dukju
    Hong, Songcheol
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (05) : 2225 - 2235
  • [2] Al-Saffar M., 2019, EL VEH INT C EV 2019, P1, DOI DOI 10.1109/EV.2019.8892897
  • [3] Load-Independent Wireless Power Transfer System for Multiple Loads Over a Long Distance
    Cheng, Chenwen
    Lu, Fei
    Zhou, Zhe
    Li, Weiguo
    Zhu, Chong
    Zhang, Hua
    Deng, Zhanfeng
    Chen, Xi
    Mi, Chunting Chris
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (09) : 9279 - 9288
  • [4] A New Analytical Calculation of the Mutual Inductance of the Coaxial Spiral Rectangular Coils
    Cheng, Yuhua
    Shu, Yaming
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [5] Design of a wireless charging system with a phase-controlled inverter under varying parameters
    Deng, Qijun
    Liu, Jiangtao
    Czarkowski, Dariusz
    Bojarski, Mariusz
    Asa, Erdem
    de Leon, Francisco
    [J]. IET POWER ELECTRONICS, 2016, 9 (13) : 2461 - 2470
  • [6] Feenaghty M, 2016, IEEE WIREL POWER TRA
  • [7] LCCL-LC Resonant Converter and Its Soft Switching Realization for Omnidirectional Wireless Power Transfer Systems
    Feng, Junjie
    Li, Qiang
    Lee, Fred C.
    Fu, Minfan
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (04) : 3828 - 3839
  • [8] Furiya K., 2017, 2017 IEEE WIR POW TR, P1, DOI DOI 10.1109/WPT.2017.7953897
  • [9] Hasan MA, 2004, P AMER CONTR CONF, P2142
  • [10] A High-Efficiency ZVS Wireless Power Transfer System for Electric Vehicle Charging WithVariable Angle Phase Shift Control
    Jiang, Yongbin
    Wang, Laili
    Fang, Jingyang
    Li, Ruibang
    Han, Ruolin
    Wang, Yue
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2021, 9 (02) : 2356 - 2372