Integrability aspects with optical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers

被引:36
作者
Lue, Xing [1 ]
Li, Juan [1 ]
Zhang, Hai-Qiang [1 ]
Xu, Tao [1 ]
Li, Li-Li [1 ]
Tian, Bo [1 ,2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun BUPT, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
MULTISOLITON SOLUTIONS; PAINLEVE ANALYSIS; BACKLUND TRANSFORMATION; HOMOCLINIC ORBITS; SOLITARY WAVES; DARK SOLITONS; EQUATION; DISPERSION; BRIGHT; TRANSMISSION;
D O I
10.1063/1.3372723
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For describing the long-distance communication and manufacturing problems of N fields propagation in inhomogeneous optical fibers, we consider a generalized variable-coefficient N-coupled nonlinear Schrodinger system with higher order effects such as the third-order dispersion, self-steepening and self-frequency shift. Using the Painleve singularity structure analysis, we obtain two cases for this system to admit the Painleve property. Then for case (1) we derive the optical dark solitons via solving the Hirota bilinear equations; and based on the obtained (2N + 1) X (2N + 1) Lax pair, we construct the Darboux transformation to obtain the optical bright solitons (including the multisoliton profiles) for case (2). Finally, the features of optical solitons (both dark and bright ones) in inhomogeneous optical fibers are analyzed and graphically discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3372723]
引用
收藏
页数:24
相关论文
共 70 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[3]  
Agrawal G P., 2012, Nonlinear Fiber Optics
[4]  
[Anonymous], 1974, Sov. Phys. JETP
[5]   Dark soliton solutions of the coupled Hirota equation in nonlinear fiber [J].
Bindu, SG ;
Mahalingam, A ;
Porsezian, K .
PHYSICS LETTERS A, 2001, 286 (05) :321-331
[6]   Integro-differential perturbations of optical solitons [J].
Biswas, A .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2000, 2 (05) :380-388
[7]   Stochastic perturbation of dispersion-managed optical solitons [J].
Biswas, A .
OPTICAL AND QUANTUM ELECTRONICS, 2005, 37 (07) :649-659
[8]   Dispersion-managed solitons in multiple channels [J].
Biswas, A .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2004, 13 (01) :81-102
[9]   Interaction of coupled higher order nonlinear Schrodinger equation solitons [J].
Borah, A ;
Ghosh, S ;
Nandy, S .
EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02) :221-225
[10]   EVOLUTION OF FEMTOSECOND PULSES IN SINGLE-MODE FIBERS HAVING HIGHER-ORDER NONLINEARITY AND DISPERSION [J].
BOURKOFF, E ;
ZHAO, W ;
JOSEPH, RI ;
CHRISTODOULIDES, DN .
OPTICS LETTERS, 1987, 12 (04) :272-274