Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method

被引:47
作者
Sun, Jun [1 ]
Zhao, Ji [1 ]
Wu, Xiaojun [1 ]
Fang, Wei [1 ]
Cai, Yujie [2 ]
Xu, Wenbo [1 ]
机构
[1] Jiangnan Univ, Sch Informat Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic systems; Parameter estimation; Global optimization; Particle Swarm Optimization; Drift motion; IDENTIFICATION;
D O I
10.1016/j.physleta.2010.04.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2816 / 2822
页数:7
相关论文
共 50 条
  • [21] Research on particle swarm optimization algorithm with characteristic of quantum parallel and its application in parameter estimation for fractional-order chaotic systems
    Huang Yu
    Liu Yu-Feng
    Peng Zhi-Min
    Ding Yan-Jun
    ACTA PHYSICA SINICA, 2015, 64 (03)
  • [22] An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems
    Wang, Ling
    Xu, Ye
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15103 - 15109
  • [23] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [24] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [25] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [26] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Sun, Jun
    Wu, Xiaojun
    Palade, Vasile
    Fang, Wei
    Shi, Yuhui
    MACHINE LEARNING, 2015, 101 (1-3) : 345 - 376
  • [27] Aerodynamic Parameter Estimation of a Symmetric Projectile Using Adaptive Chaotic Mutation Particle Swarm Optimization
    Guan, Jun
    Yi, Wenjun
    Chang, Sijiang
    Li, Xiaoyuan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [28] Parameter estimation for chaotic systems using improved bird swarm algorithm
    Xu, Chuangbiao
    Yang, Renhuan
    MODERN PHYSICS LETTERS B, 2017, 31 (36):
  • [29] Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
    Lazzus, Juan A.
    Rivera, Marco
    Lopez-Caraballo, Carlos H.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1164 - 1171
  • [30] A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
    Chen, Shaolong
    Yang, Renyu
    Yang, Renhuan
    Yang, Liu
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Liu, Weiping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016