KNOT QUANDLES AND INFINITE CYCLIC COVERING SPACES

被引:5
作者
Inoue, Ayumu [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
higher dimensional knot; quandle cocycle invariant; Alexander polynomial; INVARIANTS;
D O I
10.2996/kmj/1270559161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an n-dimensional knot (n >= l), Q(K) the knot quandle of K, Z(q)[t +/- 1]/J an Alexander quandle, and C(K) the infinite cyclic covering space of Sn+2\K. We show that the set consisting of homomorphisms Q(K)-> Zq([t +/- 1])/J is isomorphic to Z(q)[(t +/- l)]/J circle plus Hom(z[t +/- l]), (C-infinity(K)), Z(q)[(t +/- l)]/J) as Z[t +/- l]-modules. Here, Homz[t +/- l] (H-l (C-infinity(K)), Z(q)[(t +/- l)]/J) denotes the set consisting of Z[t +/- l]-homomorphisms H-1(C-infinity(K)) -> Zq([t +/- l)]/J.
引用
收藏
页码:116 / 122
页数:7
相关论文
共 11 条