VLSI Design for SC-Based Speaker Recognition

被引:0
作者
Wang, Chien-Yao [1 ]
Shih, Min [1 ]
Tai, Tzu-Chiang [2 ]
Lin, Po-Chuan [3 ]
Huang, Shih-Ting [1 ]
Zhao, Jia-Hao [1 ]
Wang, Jia-Ching [1 ]
机构
[1] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[2] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] Tung Fang Design Inst, Dept Digital Game & Animat Design, Kaohsiung, Taiwan
来源
PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS | 2015年
关键词
Speaker recognition; sparse coding; VLSI; SUPPORT VECTOR MACHINES; SPEECH RECOGNITION; NEURAL-NETWORK; CHIP DESIGN; VERIFICATION; IDENTIFICATION; SYSTEM; ALGORITHM; ARCHITECTURE; MODELS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents an efficient VLSI architecture design for sparse coding (SC)-based speaker recognition system. The proposed system first extracts the linear predictive cepstral coefficients (LPCCs). Then, we applied orthogonal matching pursuit (OMP) for sparse coding and using the sparse coefficients as feature to do classification task. To speed up the computation time, our proposed chip comprises a LPCC module and an OMP module. The LPCC module computes the linear predictive coefficients (LPCs) and then converts LPCs to LPCCs. The OMP module includes residual unit, atom selection unit, QR decomposition unit, triangular matrix inverse unit and matrix multiplication unit. This designed chip has ability to handle a large dictionary size for sparse coding in OMP modules. The prototype chip is implemented using TSMC 90 nm CMOS technology on a die with a size of approximately 1.9x1.9 mm(2).
引用
收藏
页码:335 / 338
页数:4
相关论文
共 25 条
  • [1] [Anonymous], IEICE T FUNDAM ELE A
  • [2] Support vector machines for speaker and language recognition
    Campbell, WM
    Campbell, JP
    Reynolds, DA
    Singer, E
    Torres-Carrasquillo, PA
    [J]. COMPUTER SPEECH AND LANGUAGE, 2006, 20 (2-3) : 210 - 229
  • [3] Support vector machines using GMM supervectors for speaker verification
    Campbell, WM
    Sturim, DE
    Reynolds, DA
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (05) : 308 - 311
  • [4] Speaker identification for security systems using reinforcement-trained pRAM neural network architectures
    Clarkson, TG
    Christodoulou, CC
    Guan, YL
    Gorse, D
    Romano-Critchley, DA
    Taylor, JG
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (01): : 65 - 76
  • [5] The NIST speaker recognition evaluation - Overview, methodology, systems, results, perspective
    Doddington, GR
    Przybocki, MA
    Martin, AF
    Reynolds, DA
    [J]. SPEECH COMMUNICATION, 2000, 31 (2-3) : 225 - 254
  • [6] A Bayesian approach to the verification problem: Applications to speaker verification
    Jiang, H
    Deng, L
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (08): : 874 - 884
  • [7] Juang B. H., 1998, IEEE SIGNAL PROCESSI, V15
  • [8] A VLSI chip for isolated speech recognition system
    Kim, SN
    Hwang, IC
    Kim, YW
    Kim, SW
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1996, 42 (03) : 458 - 467
  • [9] Kuan T. W., IEEE T VLSI SYSTEMS, V20, P673
  • [10] A detection approach to search-space reduction for HMM state alignment in speaker verification
    Li, Q
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (05): : 569 - 578