Experimental study on mechanical properties of steel and steel fiber reinforced concrete beams

被引:3
|
作者
Wu, Kai [1 ]
Zhang, Yanjie [1 ]
Lin, Shiqi [2 ]
Liang, Qingqing [1 ]
Qian, Shiyuan [1 ]
机构
[1] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210024, Peoples R China
[2] Finance Bur Taicang, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing capacity; ductility; energy dissipation capacity; failure mode; steel and steel fiber reinforced concrete; stiffness degradation; FLEXURAL PERFORMANCE; SEISMIC PERFORMANCE; SHEAR-STRENGTH; BEHAVIOR;
D O I
10.1002/tal.1979
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
According to the construction difficulties in steel reinforced concrete (SRC) structures, rebar cages were discretized into steel fibers to form steel and steel fiber reinforced concrete (SSFRC) structures. The 18 SSFRC beams without rebar cages were tested under bending, and the effect of the steel fiber volume ratio (rho(sf)), shaped steel ratio (rho(ss)), and shear span ratio (lambda) on mechanical properties were investigated. Increasing rho(sf) could not only turn shearing failure and debonding failure into bending failure, and effectively reduce the sudden decrease of load, but also enhance the bearing capacity, ductility, and damage resistance of specimens to a certain extent. As the rho(ss) ascended, the mechanical properties were obviously improved. However, rho(sf) should be accordingly increased to avoid adverse effects of excessive rho(ss). The specimen with small lambda had the better bearing and energy dissipation capacity and poor ductility. A large lambda meant that rho(ss) and rho(sf) should be appropriately increased to prevent premature failure of specimens.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Shear strength of steel fiber reinforced concrete beams with stirrups
    Campione, G.
    La Mendola, L.
    Papia, M.
    STRUCTURAL ENGINEERING AND MECHANICS, 2006, 24 (01) : 107 - 136
  • [42] An experimental study on the corrosion susceptibility of Recycled Steel Fiber Reinforced Concrete
    Frazao, Cristina
    Diaz, Belen
    Barros, Joaquim
    Alexandre Bogas, J.
    Toptan, Fatih
    CEMENT & CONCRETE COMPOSITES, 2019, 96 : 138 - 153
  • [43] Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete
    Tokgoz, Serkan
    Dundar, Cengiz
    THIN-WALLED STRUCTURES, 2010, 48 (06) : 414 - 422
  • [44] Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers
    Iqbal, Shahid
    Ali, Ihsan
    Room, Shah
    Khan, Shaukat Ali
    Ali, Ahsan
    MATERIALS AND STRUCTURES, 2019, 52 (03)
  • [45] Mechanical properties and constitutive model of steel fiber-reinforced rubberized concrete
    Dong, Shuo
    Zhao, Qiuhong
    Zhu, Han
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 327
  • [46] Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete
    Algburi, Atheer H. M.
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (04) : 998 - 1006
  • [47] Experimental study on the static performance of steel reinforced concrete columns with high encased steel ratios
    Zhao, Xianzhong
    Wen, Fuping
    Chen, Yiyi
    Hu, Jingli
    Yang, Xiaotian
    Dai, Liusi
    Cao, Si
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2018, 27 (15)
  • [48] Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete
    Bezerra, Augusto C. S.
    Maciel, Priscila S.
    Correa, Elaine C. S.
    Soares Junior, Paulo R. R.
    Aguilar, Maria T. P.
    Cetlin, Paulo R.
    FIBERS, 2019, 7 (12)
  • [50] Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams
    Yang, Yong
    Li, Hui
    STEEL AND COMPOSITE STRUCTURES, 2020, 37 (05) : 605 - 620