Quantum illumination reveals phase-shift inducing cloaking

被引:41
作者
Las Heras, U. [1 ]
Di Candia, R. [1 ,2 ]
Fedorov, K. G. [3 ,4 ]
Deppe, F. [3 ,4 ,5 ]
Sanz, M. [1 ]
Solano, E. [1 ,6 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Phys Chem, Apartado 644, E-48080 Bilbao, Spain
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[3] Bayer Akad Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[4] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[5] NIM, Schellingstr 4, D-80799 Munich, Germany
[6] IKERBASQUE, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48011, Spain
关键词
D O I
10.1038/s41598-017-08505-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In quantum illumination entangled light is employed to enhance the detection accuracy of an object when compared with the best classical protocol. On the other hand, cloaking is a stealth technology based on covering a target with a material deflecting the light around the object to avoid its detection. Here, we propose a quantum illumination protocol especially adapted to quantum microwave technology. This protocol seizes the phase-shift induced by some cloaking techniques, such as scattering reduction, allowing for a 3 dB improvement in the detection of a cloaked target. The method can also be employed for the detection of a phase-shift in bright environments in different frequency regimes. Finally, we study the minimal efficiency required by the photocounter for which the quantum illumination protocol still shows a gain with respect to the classical protocol.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Cloaking a metal object from an electromagnetic pulse: A comparison between various cloaking techniques [J].
Alitalo, Pekka ;
Kettunen, Henrik ;
Tretyakov, Sergei .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[2]   BROADBAND CLOAKING WITH VOLUMETRIC STRUCTURES COMPOSED OF TWO-DIMENSIONAL TRANSMISSION-LINE NETWORKS [J].
Alitalo, Pekka ;
Luukkonen, Olli ;
Mosig, Juan R. ;
Tretyakov, Sergei A. .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2009, 51 (07) :1627-1631
[3]   Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks [J].
Alitalo, Pekka ;
Bongard, Frederic ;
Zuercher, Jean-Francois ;
Mosig, Juan ;
Tretyakov, Sergei .
APPLIED PHYSICS LETTERS, 2009, 94 (01)
[4]   Plasmonic and metamaterial cloaking:: physical mechanisms and potentials [J].
Alu, Andrea ;
Engheta, Nader .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (09)
[5]   Microwave Quantum Illumination [J].
Barzanjeh, Shabir ;
Guha, Saikat ;
Weedbrook, Christian ;
Vitali, David ;
Shapiro, Jeffrey H. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[6]   Quantum teleportation of propagating quantum microwaves [J].
Di Candia, R. ;
Fedorov, K. G. ;
Zhong, L. ;
Felicetti, S. ;
Menzel, E. P. ;
Sanz, M. ;
Deppe, F. ;
Marx, A. ;
Gross, R. ;
Solano, E. .
EPJ QUANTUM TECHNOLOGY, 2015, 2
[7]  
Dolin L.S., 1961, IZV VYSSH UCHEBN ZAV, V4, P964
[8]   Three-Dimensional Invisibility Cloak at Optical Wavelengths [J].
Ergin, Tolga ;
Stenger, Nicolas ;
Brenner, Patrice ;
Pendry, John B. ;
Wegener, Martin .
SCIENCE, 2010, 328 (5976) :337-339
[9]   Nonabsorbing high-efficiency counter for itinerant microwave photons [J].
Fan, Bixuan ;
Johansson, Goran ;
Combes, Joshua ;
Milburn, G. J. ;
Stace, Thomas M. .
PHYSICAL REVIEW B, 2014, 90 (03)
[10]  
Fedorov K. G., 2017, ARXIV170305138