Stable solutions of -Δu=f(u) in RN

被引:76
作者
Dupaigne, L. [1 ]
Farina, A. [1 ]
机构
[1] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140, F-80039 Amiens, France
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; MORSE INDEX SOLUTIONS; UNBOUNDED-DOMAINS; RADIAL SOLUTIONS; DELTA-U; NONLINEARITIES; CLASSIFICATION; INSTABILITY; CONJECTURE; STABILITY;
D O I
10.4171/JEMS/217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several Liouville-type theorems are presented for stable solutions of the equation - Delta u = f(u) in R-N, where f > 0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.
引用
收藏
页码:855 / 882
页数:28
相关论文
共 21 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[3]  
Berestycki H., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P69
[4]   On the stability of radial solutions of semilinear elliptic equations in all of Rn [J].
Cabré, X ;
Capella, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (10) :769-774
[5]   LOW DIMENSIONAL INSTABILITY FOR SEMILINEAR AND QUASILINEAR PROBLEMS IN RN [J].
Castorina, Daniele ;
Esposito, Pierpaolo ;
Sciunzi, Berardino .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) :1779-1793
[6]  
DAMBROSIO L, REPRESENTATION UNPUB
[7]   Finite Morse index solutions of supercritical problems [J].
Dancer, E. N. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 :213-233
[8]  
Dancer EN, 2009, P AM MATH SOC, V137, P1333
[9]   Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion [J].
Dancer, EN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) :1225-1243
[10]   Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities [J].
Dupaigne, L. ;
Farina, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2882-2888