Transcription factor binding and modified histones in human bidirectional promoters

被引:110
作者
Lin, Jane M.
Collins, Patrick J.
Trinklein, Nathan D.
Fu, Yutao
Xi, Hualin
Myers, Richard M.
Weng, Zhiping [1 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[3] Boston Univ, Program Bioinformat & Syst Biol, Boston, MA 02215 USA
关键词
D O I
10.1101/gr.5623407
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bidirectional promoters have received considerable attention because of their ability to regulate two downstream genes ( divergent genes). They are also highly abundant, directing the transcription of similar to 11% of genes in the human genome. We categorized the presence of DNA sequence motifs, binding of transcription factors, and modified histones as overrepresented, shared, or underrepresented in bidirectional promoters with respect to unidirectional promoters. We found that a small set of motifs, including GABPA, MYC, E2F1, E2F4, NRF-1, CCAAT, YY1, and ACTACAnnTCC are overrepresented in bidirectional promoters, while the majority (73%) of known vertebrate motifs are underrepresented. We performed chromatin-immunoprecipitation (ChIP), followed by quantitative PCR for GABPA, on 118 regions in the human genome and showed that it binds to bidirectional promoters more frequently than unidirectional promoters, and its position-specific scoring matrix is highly predictive of binding. Signatures of active transcription, such as occupancy of RNA polymerase II and the modified histones H3K4me2, H3K4me3, and H3ac, are overrepresented in regions around bidirectional promoters, suggesting that a higher fraction of divergent genes are transcribed in a given cell than the fraction of other genes. Accordingly, analysis of whole-genome microarray data indicates that 68% of divergent genes are transcribed compared with 44% of all human genes. By combining the analysis of publicly available ENCODE data and a detailed study of GABPA, we survey bidirectional promoters with breadth and depth, leading to biological insights concerning their motif composition and bidirectional regulatory mode.
引用
收藏
页码:818 / 827
页数:10
相关论文
共 43 条
[1]   Bidirectional gene organization: A common architectural feature of the human genome [J].
Adachi, N ;
Lieber, MR .
CELL, 2002, 109 (07) :807-809
[2]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[3]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[4]   Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome [J].
Bieda, M ;
Xu, XQ ;
Singer, MA ;
Green, R ;
Farnham, PJ .
GENOME RESEARCH, 2006, 16 (05) :595-605
[5]   GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes [J].
Boyle, EI ;
Weng, SA ;
Gollub, J ;
Jin, H ;
Botstein, D ;
Cherry, JM ;
Sherlock, G .
BIOINFORMATICS, 2004, 20 (18) :3710-3715
[6]   GA-binding protein (GABP) and Sp1 are required, along with retinoid receptors, to mediate retinoic acid responsiveness of CD18 (β2 leukocyte integrin):: a novel mechanism of transcriptional regulation in myeloid cells [J].
Bush, TS ;
Coeur, MS ;
Resendes, KK ;
Rosmarin, AG .
BLOOD, 2003, 101 (01) :311-317
[7]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563
[8]   Genome-wide analysis of mammalian promoter architecture and evolution [J].
Carninci, Piero ;
Sandelin, Albin ;
Lenhard, Boris ;
Katayama, Shintaro ;
Shimokawa, Kazuro ;
Ponjavic, Jasmina ;
Semple, Colin A. M. ;
Taylor, Martin S. ;
Engström, Par G. ;
Frith, Martin C. ;
Forrest, Alistair R. R. ;
Alkema, Wynand B. ;
Tan, Sin Lam ;
Plessy, Charles ;
Kodzius, Rimantas ;
Ravasi, Timothy ;
Kasukawa, Takeya ;
Fukuda, Shiro ;
Kanamori-Katayama, Mutsumi ;
Kitazume, Yayoi ;
Kawaji, Hideya ;
Kai, Chikatoshi ;
Nakamura, Mari ;
Konno, Hideaki ;
Nakano, Kenji ;
Mottagui-Tabar, Salim ;
Arner, Peter ;
Chesi, Alessandra ;
Gustincich, Stefano ;
Persichetti, Francesca ;
Suzuki, Harukazu ;
Grimmond, Sean M. ;
Wells, Christine A. ;
Orlando, Valerio ;
Wahlestedt, Claes ;
Liu, Edison T. ;
Harbers, Matthias ;
Kawai, Jun ;
Bajic, Vladimir B. ;
Hume, David A. ;
Hayashizaki, Yoshihide .
NATURE GENETICS, 2006, 38 (06) :626-635
[9]   Tagging mammalian transcription complexity [J].
Carninci, Piero .
TRENDS IN GENETICS, 2006, 22 (09) :501-510
[10]  
CARTER RS, 1994, J BIOL CHEM, V269, P4381