Simulation of a high temperature electrolyzer

被引:31
作者
Grondin, Dominique [1 ]
Deseure, Jonathan [1 ]
Brisse, Annabelle [2 ]
Zahid, Mohsine [2 ]
Ozil, Patrick [1 ]
机构
[1] UJF, CNRS, INPG, LEPMI,ENSEEG, F-38402 St Martin Dheres, France
[2] EIFER, D-76131 Karlsruhe, Germany
关键词
Hydrogen production; Solid oxide electrolysis cell; Multiphysics modeling; Diffusion phenomena; Electrochemical kinetic description; OXIDE STEAM ELECTROLYZER; HYDROGEN-PRODUCTION; FUEL-CELLS; HEAT/MASS TRANSFER; OPTIMIZATION; PERFORMANCE; ANODE; MODEL; TECHNOLOGY; ELECTRODES;
D O I
10.1007/s10800-009-0030-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Based on Solid Oxide Fuel Cell (SOFC) technology, Solid Oxide Electrolysis Cell (SOEC) offers an interesting solution for mass hydrogen production. This study proposes a multiphysics model to predict the SOEC behavior, based on similar charge, mass, and heat transport phenomena as for SOFC. However, the mechanism of water steam reduction on Nickel/Yttria-Stabilized Zirconia (Ni/YSZ) cermet is not yet clearly identified. Therefore, a global approach is used for modeling. The simulated results demonstrated that a Butler-Volmer's equation including concentration overpotential provides an acceptable estimation of the experimental electric performance under some operating conditions. These simulations highlighted three thermal operating modes of SOEC and showed that temperature distribution depends on gas feeding configurations.
引用
收藏
页码:933 / 941
页数:9
相关论文
共 23 条
[1]   Experimental and numerical analysis of a radial flow solid oxide fuel cell [J].
Andreassi, Luca ;
Rubeo, Giampiero ;
Ubertini, Stefano ;
Lunghi, Piero ;
Bove, Roberto .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) :4559-4574
[2]   Radiation heat transfer in SOFC materials and components [J].
Damm, DL ;
Fedorov, AG .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :158-165
[3]   Theoretical optimisation of a SOFC composite cathode [J].
Deseure, J ;
Bultel, Y ;
Dessemond, L ;
Siebert, E .
ELECTROCHIMICA ACTA, 2005, 50 (10) :2037-2046
[4]   HIGH-TEMPERATURE ELECTROLYSIS OF WATER-VAPOR - STATUS OF DEVELOPMENT AND PERSPECTIVES FOR APPLICATION [J].
DONITZ, W ;
ERDLE, E .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1985, 10 (05) :291-295
[5]   HIGH-TEMPERATURE ELECTROLYSIS OF STEAM - STATE OF DEVELOPMENT OF A NEW TECHNOLOGY FOR PRODUCING HYDROGEN [J].
DONITZ, W ;
STREICHER, R .
CHEMIE INGENIEUR TECHNIK, 1980, 52 (05) :436-438
[6]   Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte [J].
Eguchi, K ;
Hatagishi, T ;
Arai, H .
SOLID STATE IONICS, 1996, 86-8 :1245-1249
[7]  
Grondin D, 2008, COMPUT-AIDED CHEM EN, V25, P841
[8]   Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology [J].
Herring, J. Stephen ;
O'Brien, James E. ;
Stoots, Carl M. ;
Hawkes, G. L. ;
Hartvigsen, Joseph J. ;
Shahnam, Mehrdad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (04) :440-450
[9]   NUMERICAL EVALUATION OF THE POROUS-MEDIUM EFFECTIVE DIFFUSIVITY BETWEEN THE KNUDSEN AND CONTINUUM LIMITS [J].
HO, FG ;
STRIEDER, W .
JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (12) :6296-6300
[10]   Heat/mass transfer in porous electrodes of fuel cells [J].
Hwang, J. J. ;
Chen, P. Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (13-14) :2315-2327