Synthesis and Room Temperature Photoluminescence of Mesoporous Zirconia with a Tetragonal Nanocrystalline Framework

被引:41
作者
Mondal, Aparna [1 ,2 ]
Zachariah, Ajesh [2 ]
Nayak, Priyadarshini [1 ]
Nayak, Bibhuti B. [3 ]
机构
[1] Natl Inst Technol, Dept Chem, Rourkela 769008, Orissa, India
[2] CSIR, Natl Inst Interdisciplinary Sci & Technol, Mat & Minerals Div, Thiruvananthapuram 695019, Kerala, India
[3] Natl Inst Technol, Dept Ceram Engn, Rourkela 769008, Orissa, India
关键词
ENHANCED PHASE-STABILITY; HIGH-SURFACE-AREA; ZRO2; ULTRAVIOLET; TRANSFORMATION;
D O I
10.1111/j.1551-2916.2009.03396.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mesoporous ZrO2 with a tetragonal (t) nanocrystalline framework was synthesized using zirconium propoxide as the zirconium precursor and cetyltrimethylammonium bromide as pore-directing agent and subsequent calcination of the inorganic/organic intermediate. The Raman spectrum showed six distinct peaks at 146, 268, 325, 480, 615, and 645 cm(-1), which further confirm t-structure of the mesoporous ZrO2. Fourier transform infrared spectroscopy analysis reveals that mesoporous ZrO2 prepared at 500 degrees C is template free. The mesoporous t-ZrO2 possesses narrowly distributed pore size (2-11 nm) with average pore diameter of 5 nm and surface area of 65 m(2)/g. A photoluminescence band centered at 419 nm under excitation at 285 nm wavelength at room temperature is attributed to the ionized oxygen vacancy in t-ZrO2 in the mesoporous structure. The combined effects of grain/pore size, oxygen vacancies and mesoporous wall strain-energy play important role in stabilizing the t-nanocrystalline framework of mesoporous ZrO2. In comparison with the mesoporous ZrO2 materials stabilized by chemical treatment, the present route is simpler and resulted in mesoporous ZrO2 with crystalline framework.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 38 条
[1]   SYNTHESIS OF HEXAGONALLY PACKED MESOPOROUS TIO2 BY A MODIFIED SOL-GEL METHOD [J].
ANTONELLI, DM ;
YING, JY .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (18) :2014-2017
[2]   Synthesis and room-temperature ultraviolet photoluminesence properties of zirconia nanowires [J].
Cao, HQ ;
Qiu, XQ ;
Luo, B ;
Liang, Y ;
Zhang, YH ;
Tan, RQ ;
Zhao, MJ ;
Zhu, QM .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (03) :243-246
[3]   Thermal quenching properties of ultraviolet emitting centers in mesoporous silica [J].
Carbonaro, C. M. ;
Ricci, P. C. ;
Anedda, A. .
PHYSICAL REVIEW B, 2007, 76 (12)
[4]   A composite surfactant route for the synthesis of thermally stable and hierarchically porous zirconia with a nanocrystallized framework [J].
Chen, HR ;
Gu, JL ;
Shi, JL ;
Liu, ZC ;
Gao, JH ;
Ruan, ML ;
Yan, DS .
ADVANCED MATERIALS, 2005, 17 (16) :2010-+
[5]   Violet-blue photoluminescent properties of mesoporous zirconia modified with phosphoric acid [J].
Chen, HR ;
Shi, JL ;
Yang, Y ;
Li, YS ;
Yan, DS ;
Shi, CS .
APPLIED PHYSICS LETTERS, 2002, 81 (15) :2761-2763
[6]   Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment [J].
Chen, Shih-Yuan ;
Jang, Ling-Yun ;
Cheng, Soofin .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (24) :11761-11771
[7]   Ultraviolet photoluminescence of porous silica [J].
Chiodini, N ;
Meinardi, F ;
Morazzoni, F ;
Paleari, A ;
Scotti, R ;
Di Martino, D .
APPLIED PHYSICS LETTERS, 2000, 76 (22) :3209-3211
[8]   A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts [J].
Chua, YT ;
Stair, PC ;
Wachs, IE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (36) :8600-8606
[9]   Highly ordered porous zirconias from surfactant-controlled syntheses:: Zirconium oxide-sulfate and zirconium oxo phosphate [J].
Ciesla, U ;
Fröba, M ;
Stucky, G ;
Schüth, F .
CHEMISTRY OF MATERIALS, 1999, 11 (02) :227-234
[10]   Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis [J].
Ciesla, U ;
Schacht, S ;
Stucky, GD ;
Unger, KK ;
Schuth, F .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1996, 35 (05) :541-543