Plasmonic enhancement of aqueous processed organic photovoltaics

被引:5
|
作者
Chowdhury, R. [1 ,2 ]
Tegg, L. [1 ,3 ]
Keast, V. J. [1 ]
Holmes, N. P. [3 ]
Cooling, N. A. [2 ]
Vaughan, B. [2 ]
Nicolaidis, N. C. [2 ]
Belcher, W. J. [2 ]
Dastoor, P. C. [1 ,2 ]
Zhou, X. [1 ,2 ]
机构
[1] Univ Newcastle, Dept Phys, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Univ Newcastle, Fac Sci, Ctr Organ Elect, Callaghan, NSW 2308, Australia
[3] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
关键词
POLYMER SOLAR-CELLS; HIGH-PERFORMANCE; ACTIVE LAYER; NANOPARTICULATE; EFFICIENCY; THICKNESS; DEVICES; RECOMBINATION; OPTIMIZATION; PHOTOCURRENT;
D O I
10.1039/d1ra02328d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium tungsten bronze (NaxWO3) is a promising alternative plasmonic material to nanoparticulate gold due to its strong plasmonic resonances in both the visible and near-infrared (NIR) regions. Additional benefits include its simple production either as a bulk or a nanoparticle material at a relatively low cost. In this work, plasmonic NaxWO3 nanoparticles were introduced and mixed into the nanoparticulate zinc oxide electron transport layer of a water processed poly(3-hexylthiophene):phenyl-C-61-butyric acid methyl ester (P3HT:PC61BM) nanoparticle (NP) based organic photovoltaic device (NP-OPV). The power conversion efficiency of NP-OPV devices with NaxWO3 NPs added was found to improve by around 35% compared to the control devices, attributed to improved light absorption, resulting in an enhanced short circuit current and fill factor.
引用
收藏
页码:19000 / 19011
页数:12
相关论文
共 50 条
  • [1] Plasmonic Absorption Enhancement in Organic Photovoltaics
    Maes, Bjorn
    Abass, Aimi
    Shen, Honghui
    Bienstman, Peter
    2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [2] Understanding the Limits of Plasmonic Enhancement in Organic Photovoltaics
    Erwin, William R.
    MacKenzie, Roderick C. I.
    Bardhan, Rizia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (14): : 7859 - 7866
  • [3] Modeling plasmonic efficiency enhancement in organic photovoltaics
    Taff, Y.
    Apter, B.
    Katz, E. A.
    Efron, U.
    APPLIED OPTICS, 2015, 54 (26) : 7957 - 7961
  • [4] Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics
    Tutuncuoglu, Atacan
    Yuce, Meral
    Kurt, Hasan
    CRYSTALS, 2024, 14 (09)
  • [5] Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries
    Vangelidis, Ioannis
    Theodosi, Anna
    Beliatis, Michail J.
    Gandhi, Keyur K.
    Laskarakis, Argiris
    Patsalas, Panos
    Logothetidis, Stergios
    Silva, S. Ravi P.
    Lidorikis, Elefterios
    ACS PHOTONICS, 2018, 5 (04): : 1440 - 1452
  • [6] Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement
    Zeng, Beibei
    Kafafi, Zakya H.
    Bartoli, Filbert J.
    ORGANIC PHOTOVOLTAICS XV, 2014, 9184
  • [7] Enhancement of plasmonic photovoltaics with pyramidal nanoparticles
    Yassin, Heba M.
    El-Batawy, Yasser M.
    Soliman, Ezzeldin A.
    APPLIED OPTICS, 2023, 62 (08) : 1961 - 1969
  • [8] Absorption enhancement in thin-film organic photovoltaics with double plasmonic structures
    Zeng, Beibei
    Gan, Qiaoqiang
    Kafafi, Zakya H.
    Bartoli, Filbert J.
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 805 - +
  • [9] Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity
    Sykes, Matthew E.
    Barito, Adam
    Amonoo, Jojo A.
    Green, Peter F.
    Shtein, Max
    ADVANCED ENERGY MATERIALS, 2014, 4 (11)
  • [10] Recent advances in plasmonic organic photovoltaics
    Xi Yang
    Wenqing Liu
    Hongzheng Chen
    Science China Chemistry, 2015, 58 : 210 - 220