Convergence of discrete-time Kalman filter estimate to continuous time estimate

被引:5
作者
Aalto, Atte [1 ,2 ]
机构
[1] Univ Paris Saclay, Inria, Palaiseau, France
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
关键词
infinite dimensional systems; temporal discretisation; Kalman filter; sampled data; EQUATIONS;
D O I
10.1080/00207179.2015.1090017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with the convergence of the state estimate obtained from the discrete-time Kalman filter to the continuous time estimate as the temporal discretisation is refined. The convergence follows from Martingale convergence theorem as demonstrated below; however, surprisingly, no results exist on the rate of convergence. We derive convergence rate estimates for the discrete-time Kalman filter estimate for finite and infinite dimensional systems. The proofs are based on applying the discrete-time Kalman filter on a dense numerable subset of a certain time interval [0, T].
引用
收藏
页码:668 / 679
页数:12
相关论文
共 18 条
[1]  
Aalto A., 2014, ARXIV14067160
[2]  
[Anonymous], 1998, Stochastic differential equations
[3]   Discrete-Time Solutions to the Continuous-Time Differential Lyapunov Equation With Applications to Kalman Filtering [J].
Axelsson, Patrik ;
Gustafsson, Fredrik .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (03) :632-643
[4]  
Bensoussan A., 1971, Filtrage optimal des systemes lineaires
[5]  
Curtain R, 1979, INFINITE DIMENSIONAL
[6]  
Davis M. H. A., 1977, LINEAR ESTIMATION ST
[7]  
Gelb A., 1989, Applied Optimal Estimation
[8]   GALERKIN APPROXIMATION FOR OPTIMAL LINEAR-FILTERING OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS [J].
GERMANI, A ;
JETTO, L ;
PICCIONI, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (06) :1287-1305
[9]  
Horowitz L.L., 1974, THESIS MIT
[10]  
Kalman R. E., 1961, J BASIC ENG-T ASME, V83, P95, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]