Intrusion Detection via MLP Neural Network using an Arduino Embedded System

被引:12
作者
Florencio, Felipe de Almeida [1 ]
Moreno, Edward David [2 ]
Macedo, Hendrik Teixeira [2 ]
de Britto Salgueiro, Ricardo J. P. [2 ]
do Nascimento, Filipe Barreto [2 ]
Oliveira Santos, Flavio Arthur [1 ]
机构
[1] Univ Fed Sergipe, Prog Posgrad Ciencia Comp, Sao Cristovao, Brazil
[2] Univ Fed Sergipe, Dept Comp, Sao Cristovao, Brazil
来源
2018 VIII BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC 2018) | 2018年
关键词
IDS; KDD; IoT; Arduino; Intrusion Detection; Multilayer Perceptron; MLP; Embedded System;
D O I
10.1109/SBESC.2018.00036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time intrusion detection using low-power devices is one of the main challenges for the Internet of Things (IoT) research community. Currently, many Intrusion Detection Systems tackle this task using Artificial Neural Networks (ANNs) and other machine learning techniques. However, some of these methods are computationally costly, which makes them unfeasible in an IoT scenario. To address this, we train a Multilayer Perceptron (MLP) using NLS-KDD for Weka, a modified version of the NSL-KDD dataset containing less features, resulting in a perceptron neural network with a small number of artificial neurons. As a result, we evaluated the MLP networks using metrics such as accuracy, precision, and coverage, as well as classifier performance running on Arduino via time measurements (microseconds).
引用
收藏
页码:190 / 195
页数:6
相关论文
共 19 条
  • [1] RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
    Amini, Morteza
    Jalili, Rasool
    Shahriari, Hamid Reza
    [J]. COMPUTERS & SECURITY, 2006, 25 (06) : 459 - 468
  • [2] [Anonymous], 2016, PROC 12 ADV INT C TE
  • [3] [Anonymous], ATMEGA328 P
  • [4] [Anonymous], NSL KDD DATASET WEKA
  • [5] [Anonymous], 2014, MACHINE LEARNING ALG
  • [6] [Anonymous], INT CONF COMP SCI
  • [7] [Anonymous], 2016, INT J ADV COMPUT SCI, DOI DOI 10.14569/IJACSA.2016.070419
  • [8] The Internet of Things: A survey
    Atzori, Luigi
    Iera, Antonio
    Morabito, Giacomo
    [J]. COMPUTER NETWORKS, 2010, 54 (15) : 2787 - 2805
  • [9] Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset
    Bolon-Canedo, V.
    Sanchez-Marono, N.
    Alonso-Betanzos, A.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5947 - 5957
  • [10] Botes F. H., 2017, 16 EUROPEAN C CYBER, P53