Real bounds, ergodicity and negative Schwarzian for multimodal maps

被引:65
作者
van Strien, S [1 ]
Vargas, E
机构
[1] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Sao Paulo, Dept Math, Sao Paulo, Brazil
关键词
dynamical systems; interval dynamics; holomorphic dynamics;
D O I
10.1090/S0894-0347-04-00463-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:749 / 782
页数:34
相关论文
共 25 条
[21]   On the metric properties of multimodal interval maps and C2 density of Axiom A [J].
Shen, WX .
INVENTIONES MATHEMATICAE, 2004, 156 (02) :301-403
[22]   On the measurable dynamics of real rational functions [J].
Shen, WX .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :957-983
[23]   Decay of geometry in the cubic family [J].
Swiatek, G ;
Vargas, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :1311-1329
[24]   HYPERBOLICITY AND INVARIANT-MEASURES FOR GENERAL C2 INTERVAL MAPS SATISFYING THE MISIUREWICZ CONDITION [J].
VANSTRIEN, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (03) :437-495
[25]   Measure of minimal sets of polymodal maps [J].
Vargas, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :159-178