Real bounds, ergodicity and negative Schwarzian for multimodal maps

被引:65
作者
van Strien, S [1 ]
Vargas, E
机构
[1] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Sao Paulo, Dept Math, Sao Paulo, Brazil
关键词
dynamical systems; interval dynamics; holomorphic dynamics;
D O I
10.1090/S0894-0347-04-00463-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:749 / 782
页数:34
相关论文
共 25 条
[1]  
BLOKH A, 1991, ANN SCI ECOLE NORM S, V24, P737
[2]   MEASURE AND DIMENSION OF SOLENOIDAL ATTRACTORS OF ONE-DIMENSIONAL DYNAMIC-SYSTEMS [J].
BLOKH, AM ;
LYUBICH, MY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :573-583
[3]   NONEXISTENCE OF WANDERING INTERVALS AND STRUCTURE OF TOPOLOGICAL ATTRACTORS OF ONE DIMENSIONAL DYNAMICAL-SYSTEMS .2. THE SMOOTH CASE [J].
BLOKH, AM ;
LYUBICH, MY .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :751-758
[4]   Wild Cantor attractors exist [J].
Bruin, H ;
Keller, G ;
Nowicki, T ;
vanStrien, S .
ANNALS OF MATHEMATICS, 1996, 143 (01) :97-130
[5]  
de Melo W., 1993, ERGEBNISSE MATH IHRE, V25
[6]   A STRUCTURE THEOREM IN ONE DIMENSIONAL DYNAMICS [J].
DEMELO, W ;
VANSTRIEN, S .
ANNALS OF MATHEMATICS, 1989, 129 (03) :519-546
[7]  
KOZLOVSKI O, 2003, RIGIDITY REAL POLYNO
[8]   Axiom A maps are dense in the space of unimodal maps in the Ck topology [J].
Kozlovski, OS .
ANNALS OF MATHEMATICS, 2003, 157 (01) :1-43
[9]   Getting rid of the negative Schwarzian derivative condition [J].
Kozlovski, OS .
ANNALS OF MATHEMATICS, 2000, 152 (03) :743-762
[10]  
Levin G, 1998, FUND MATH, V157, P287