Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks

被引:9
作者
Ge, Meng [1 ]
Zou, Xiaodong [1 ]
Huang, Zhehao [1 ]
机构
[1] Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
electron diffraction; electron crystallography; electron microscopy; metal-organic framework; crystal structure; DATA-COLLECTION; STRUCTURE ELUCIDATION; PORE-SIZE; TOMOGRAPHY; CRYSTALLOGRAPHY; ZEOLITE; IMPLEMENTATION; INTEGRATION; CRYSTALS; REMOVAL;
D O I
10.3390/cryst11030263
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Electrons interact strongly with matter, which makes it possible to obtain high-resolution electron diffraction data from nano- and submicron-sized crystals. Using electron beam as a radiation source in a transmission electron microscope (TEM), ab initio structure determination can be conducted from crystals that are 6-7 orders of magnitude smaller than using X-rays. The rapid development of three-dimensional electron diffraction (3DED) techniques has attracted increasing interests in the field of metal-organic frameworks (MOFs), where it is often difficult to obtain large and high-quality crystals for single-crystal X-ray diffraction. Nowadays, a 3DED dataset can be acquired in 15-250 s by applying continuous crystal rotation, and the required electron dose rate can be very low (<0.1 e s(-1) angstrom(-2)). In this review, we describe the evolution of 3DED data collection techniques and how the recent development of continuous rotation electron diffraction techniques improves data quality. We further describe the structure elucidation of MOFs using 3DED techniques, showing examples of using both low- and high-resolution 3DED data. With an improved data quality, 3DED can achieve a high accuracy, and reveal more structural details of MOFs. Because the physical and chemical properties of MOFs are closely associated with their crystal structures, we believe 3DED will only increase its importance in developing MOF materials.
引用
收藏
页数:14
相关论文
共 99 条
[1]   Beam-sensitive metal-organic framework structure determination by microcrystal electron diffraction [J].
Banihashemi, Fateme ;
Bu, Guanhong ;
Thaker, Amar ;
Williams, Dewight ;
Lin, Jerry Y. S. ;
Nannenga, Brent L. .
ULTRAMICROSCOPY, 2020, 216 (216)
[2]   Carbonate-Based Zeolitic Imidazolate Framework for Highly Selective CO2 Capture [J].
Basnayake, Sajani A. ;
Su, Jie ;
Zou, Xiadong ;
Balkus, Kenneth J., Jr. .
INORGANIC CHEMISTRY, 2015, 54 (04) :1816-1821
[3]   iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM [J].
Battye, T. Geoff G. ;
Kontogiannis, Luke ;
Johnson, Owen ;
Powell, Harold R. ;
Leslie, Andrew G. W. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 :271-281
[4]   Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents [J].
Bobbitt, N. Scott ;
Mendonca, Matthew L. ;
Howarth, Ashlee J. ;
Islamoglu, Timur ;
Hupp, Joseph T. ;
Farha, Omar K. ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3357-3385
[5]   Precession Electron Diffraction Tomography for Solving Complex Modulated Structures: the Case of Bi5Nb3O15 [J].
Boullay, Philippe ;
Palatinus, Lukas ;
Barrier, Nicolas .
INORGANIC CHEMISTRY, 2013, 52 (10) :6127-6135
[6]   Serial protein crystallography in an electron microscope [J].
Buecker, Robert ;
Hogan-Lamarre, Pascal ;
Mehrabi, Pedram ;
Schulz, Eike C. ;
Bultema, Lindsey A. ;
Gevorkov, Yaroslav ;
Brehm, Wolfgang ;
Yefanov, Oleksandr ;
Oberthuer, Dominik ;
Kassier, Guenther H. ;
Miller, R. J. Dwayne .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Crystal structure determination and refinement via SIR2014 [J].
Burla, Maria Cristina ;
Caliandro, Rocco ;
Carrozzini, Benedetta ;
Cascarano, Giovanni Luca ;
Cuocci, Corrado ;
Giacovazzo, Carmelo ;
Mallamo, Mariarosaria ;
Mazzone, Annamaria ;
Polidori, Giampiero .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 :306-309
[8]   Coordination Modulation Method To Prepare New Metal-Organic Framework-Based CO-Releasing Materials [J].
Carmona, Francisco J. ;
Maldonado, Carmen R. ;
Ikemura, Shuya ;
Romao, Carlos C. ;
Huang, Zhehao ;
Xu, Hongyi ;
Zou, Xiaodong ;
Kitagawa, Susumu ;
Furukawa, Shuhei ;
Barea, Elisa .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) :31158-31167
[9]   Phase dependent encapsulation and release profile of ZIF-based biocomposites [J].
Carraro, F. ;
Velasguez-Hernandez, M. de J. ;
Astria, E. ;
Liang, W. ;
Twight, L. ;
Parise, C. ;
Ge, M. ;
Huang, Z. ;
Ricco, R. ;
Zou, X. ;
Villanova, L. ;
Kappe, C. O. ;
Doonan, C. ;
Falcaro, P. .
CHEMICAL SCIENCE, 2020, 11 (13) :3397-3404
[10]   Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal-Organic Framework [J].
Chen, Gan ;
Gee, Leland B. ;
Xu, Wenqian ;
Zhu, Yanbing ;
Lezama-Pacheco, Juan S. ;
Huang, Zhehao ;
Li, Zongqi ;
Babicz, Jeffrey T., Jr. ;
Choudhury, Snehashis ;
Chang, Ting-Hsiang ;
Reed, Evan ;
Solomon, Edward, I ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21243-21248