Minimal Surfaces in Three-Dimensional Riemannian Manifold Associated with a Second-Order ODE

被引:6
作者
Bayrakdar, T. [1 ]
Ergin, A. A. [1 ]
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
关键词
Minimal surface; totally geodesic submanifold; second-order ODE; jet bundle; Riemannian geometry; CONSTANT MEAN-CURVATURE; EQUIVALENCE PROBLEM; CONNECTIONS; GEOMETRY; SYSTEMS; FORMULA;
D O I
10.1007/s00009-018-1229-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a surface corresponding to a first-order ODE is minimal in three-dimensional Riemannian manifold which is determined by the first prolongation of if and only if . Accordingly, any linear first-order ODE describes a minimal surface which is not necessarily totally geodesic.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Aminov YA, 2001, The geometry of submanifolds
  • [2] [Anonymous], 2001, Riemannian Geometry in an Orthogonal Frame, DOI DOI 10.1142/4808
  • [3] Burgers' Equations in the Riemannian Geometry Associated with First-Order Differential Equations
    Bayrakdar, Z. Ok
    Bayrakdar, T.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [4] BRYANT RL, 1987, ASTERISQUE, P321
  • [5] Bryant R, 2009, J DIFFER GEOM, V83, P465
  • [6] Cartan E., 1924, Bulletin de la Socit Mathmatique de France, V52, P205, DOI [10.24033/bsmf.1053, DOI 10.24033/BSMF.1053]
  • [7] Chen B.Y, ARXIV13071875V1
  • [8] Crampin M, 1996, ANN I H POINCARE-PHY, V65, P223
  • [9] Doubrov B., 1999, Lobachevskii J. Math., V3, P39
  • [10] Earp RS, 2001, ILLINOIS J MATH, V45, P371