An n-dimensional space that admits a Poincare inequality but has no manifold points

被引:10
作者
Hanson, B [1 ]
Heinonen, J
机构
[1] St Olaf Coll, Dept Math, Northfield, MN 55057 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Poincare inequality; Ahlfors n-regular; manifold point;
D O I
10.1090/S0002-9939-00-05453-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each integer n greater than or equal to 2 we construct a compact, geodesic metric space X which has topological dimension n, is Ahlfors n-regular, satisfies the Poincare inequality, possesses R-n as a unique tangent cone at H-n almost every point, but has no manifold points.
引用
收藏
页码:3379 / 3390
页数:12
相关论文
共 9 条
[1]   Poincare inequalities and quasiconformal structure on the boundary of some hyperbolic buildings [J].
Bourdon, M ;
Pajot, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) :2315-2324
[2]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[3]  
David G., 1997, Oxford Lecture Ser. Math. Appl., V7
[4]  
Gromov M., 1981, Structures metriques pour les varieties riemanniennes, V1
[5]  
HAJLASZ P, 1995, CR ACAD SCI I-MATH, V320, P1211
[6]  
HAJLASZ P, IN PRESS MEM AM MATH
[7]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[8]  
LAAKSO TJ, IN PRESS GAFA GEOM F
[9]  
STEIN EM, 1970, SINGULAR INTEGRALS D