Quantum Entanglement in High Dimensions

被引:0
作者
Aubrun, Guillaume [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
来源
QUANTUM SYMMETRIES | 2017年 / 2189卷
关键词
STATES; SEPARABILITY; CONJECTURE; SUBSPACE; PROOF;
D O I
10.1007/978-3-319-63206-3_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These lecture notes study some mathematical aspects of the phenomenon of entanglement from quantum mechanics. While the questions we consider are motivated by quantum information theory, where entanglement plays a fundamental role, our exposition targets mostly mathematicians who are not assumed to be familiar with quantum information theory. © 2017, Springer International Publishing AG.
引用
收藏
页码:83 / 114
页数:32
相关论文
共 46 条
  • [1] Unique decompositions, faces, and automorphisms of separable states
    Alfsen, Erik
    Shultz, Fred
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [2] [Anonymous], ARXIV13051567
  • [3] Aubrun G., 2017, MATH SURVERYS MONOGR, V223
  • [4] Entanglement Thresholds for Random Induced States
    Aubrun, Guillaume
    Szarek, Stanislaw J.
    Ye, Deping
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (01) : 129 - 171
  • [5] PARTIAL TRANSPOSITION OF RANDOM STATES AND NON-CENTERED SEMICIRCULAR DISTRIBUTIONS
    Aubrun, Guillaume
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (02)
  • [6] Hastings's Additivity Counterexample via Dvoretzky's Theorem
    Aubrun, Guillaume
    Szarek, Stanisaw
    Werner, Elisabeth
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (01) : 85 - 97
  • [7] Eigenvectors and eigenvalues in a random subspace of a tensor product
    Belinschi, Serban
    Collins, Benoit
    Nechita, Ion
    [J]. INVENTIONES MATHEMATICAE, 2012, 190 (03) : 647 - 697
  • [8] Concentrating partial entanglement by local operations
    Bennett, CH
    Bernstein, HJ
    Popescu, S
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2046 - 2052
  • [9] NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN
    BOURGAIN, J
    MILMAN, VD
    [J]. INVENTIONES MATHEMATICAE, 1987, 88 (02) : 319 - 340
  • [10] Are Random Pure States Useful for Quantum Computation?
    Bremner, Michael J.
    Mora, Caterina
    Winter, Andreas
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (19)