Long time behavior and field-induced instabilities of smectic liquid crystals

被引:0
作者
Kim, Soojung [1 ]
Pan, Xing-Bin [2 ,3 ,4 ]
机构
[1] Soongsil Univ, Dept Math, Seoul 06978, South Korea
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[3] East China Normal Univ, Sch Math, Shanghai 200062, Peoples R China
[4] NYU Shanghai, NY ECNU Inst Math Sci, Shanghai 200062, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Smectic liquid crystal; Magnetic field-induced instability; Global solution; Long time behavior; GINZBURG-LANDAU EQUATIONS; EXISTENCE; DYNAMICS; FLOW;
D O I
10.1016/j.jfa.2021.109036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study long time behavior and dynamical instabilities of smectic liquid crystals in an applied magnetic field. Under a planar ansatz of the de Gennes model, we first establish existence of global weak solutions and prove convergence to an equilibrium as t tends to infinity. Then we discuss field-induced dynamical instability of pure smectic states and dynamical instability of the pure nematic states, which rely on weak instabilities of the pure smectic and nematic states in magnetic fields. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:40
相关论文
共 39 条
[1]  
[Anonymous], STUDIES MATH APPL
[2]  
[Anonymous], 2005, 2 ORDER PARABOLIC DI
[3]   Theoretical studies of Freedericksz transitions in SmC liquid crystals [J].
Atkin, RJ ;
Stewart, IW .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1997, 8 :253-262
[4]  
ATKIN RJ, 1994, Q J MECH APPL MATH, V47, P232
[5]   Mathematics and liquid crystals [J].
Ball, J. M. .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2017, 647 (01) :1-27
[6]   Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum [J].
Bauman, P ;
Jadallah, H ;
Phillips, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
[7]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507, DOI 10.4310/jdg/1214448751
[8]  
Chen G., 2004, Contemporary Mathematics, V357, P49
[9]   FREEDERICKSZ TRANSITION IN NEMATIC LIQUID CRYSTAL FLOWS IN DIMENSION TWO [J].
Chen, Yuan ;
Kim, Soojung ;
Yu, Yong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :4838-4860
[10]  
COHEN R, 1991, NATO ADV SCI I C-MAT, V332, P261