ENTANGLEMENT WITNESSES CONSTRUCTED BY PERMUTATION PAIRS

被引:0
作者
Hou, Jinchuan [1 ]
Wang, Wenli [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Separable states; entangled states; positive maps; entanglement witnesses; permutations; CRITERION; SEPARABILITY; STATES; SUFFICIENT; OPTIMALITY;
D O I
10.1007/s10473-021-0313-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 3, we construct a class {W-n,W-pi 1,W-pi 2} of n(2) x n(2) hermitian matrices by the permutation pairs and show that, for a pair {pi(1), pi(2)} of permutations on (1, 2,..., n), W-n,W-pi 1,W-pi 2 is an entanglement witness of the n circle times n system if {pi(1), pi(2)} has the property (C). Recall that a pair {pi(1), pi(2)} of permutations of (1, 2,..., n) has the property (C) if, for each i, one can obtain a permutation of (1,..., i - 1, i+1,..., n) from (pi(1) (1),..., pi(1)(i - 1), pi(1)(i+1),..., pi(1)(n)) and (pi(2) (1),..., pi(2) (i - 1), pi(2)(i+1),..., pi(2) (n)). We further prove that W-n,W-pi 1,W-pi 2 is not comparable with W-n,W-pi,W- which is the entanglement witness constructed from a single permutation pi; W-n,W-pi 1,W-pi 2 is decomposable if pi(1)pi(2) = id or pi(2)(1) = pi(2)(2) = id. For the low dimensional cases n 2 {3, 4}, we give a sufficient and necessary condition on pi(1), pi(2) for W-n,W-pi 1,W-pi 2 to be an entanglement witness. We also show that, for n is an element of {3, 4}, W-n,W-pi 1,W-pi 2 is decomposable if and only if pi(1)pi(2) = id or pi(2)(1) = pi(2)(2) = id; W-3,W-pi 1,W-pi 2 is optimal if and only if (pi(1), pi(2)) = (pi, pi(2)), where pi = (2, 3, 1). As applications, some entanglement criteria for states and some decomposability criteria for positive maps are established.
引用
收藏
页码:843 / 874
页数:32
相关论文
共 50 条
[31]   Entanglement witnesses for indistinguishable particles [J].
Reusch, A. ;
Sperling, J. ;
Vogel, W. .
PHYSICAL REVIEW A, 2015, 91 (04)
[32]   CONSTRUCTING MULTIPARTITE ENTANGLEMENT WITNESSES [J].
Michalski, Milosz .
QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 :237-254
[33]   Common entanglement witnesses and their characteristics [J].
Ganguly, Nirman ;
Adhikari, Satyabrata ;
Majumdar, A. S. .
QUANTUM INFORMATION PROCESSING, 2013, 12 (01) :425-436
[34]   Measurement-device-independent nonlinear entanglement witnesses [J].
Sen, Kornikar ;
Srivastava, Chirag ;
Sen, Ujjwal .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
[35]   Enhanced realignment criterion vs linear entanglement witnesses [J].
Sarbicki, Gniewomir ;
Scala, Giovanni ;
Chruscinski, Dariusz .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
[36]   Entanglement witnesses and characterizing entanglement properties of some PPT states [J].
Jafarizadeh, M. A. ;
Behzadi, N. ;
Akbari, Y. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (01) :197-203
[37]   Estimating localizable entanglement from witnesses [J].
Amaro, David ;
Muller, Markus ;
Pal, Amit Kumar .
NEW JOURNAL OF PHYSICS, 2018, 20
[38]   The inverse eigenvalue problem for entanglement witnesses [J].
Johnston, Nathaniel ;
Patterson, Everett .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 550 :1-27
[39]   Entanglement witnesses: construction, analysis and classification [J].
Chruscinski, Dariusz ;
Sarbicki, Gniewomir .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (48)
[40]   A NECESSARY AND SUFFICIENT CONDITION FOR POSITIVITY OF LINEAR MAPS ON M4 CONSTRUCTED FROM PERMUTATION PAIRS [J].
Zhao, Haili ;
Hou, Jinchuan .
OPERATORS AND MATRICES, 2015, 9 (03) :597-617