ENTANGLEMENT WITNESSES CONSTRUCTED BY PERMUTATION PAIRS

被引:0
作者
Hou, Jinchuan [1 ]
Wang, Wenli [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Separable states; entangled states; positive maps; entanglement witnesses; permutations; CRITERION; SEPARABILITY; STATES; SUFFICIENT; OPTIMALITY;
D O I
10.1007/s10473-021-0313-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 3, we construct a class {W-n,W-pi 1,W-pi 2} of n(2) x n(2) hermitian matrices by the permutation pairs and show that, for a pair {pi(1), pi(2)} of permutations on (1, 2,..., n), W-n,W-pi 1,W-pi 2 is an entanglement witness of the n circle times n system if {pi(1), pi(2)} has the property (C). Recall that a pair {pi(1), pi(2)} of permutations of (1, 2,..., n) has the property (C) if, for each i, one can obtain a permutation of (1,..., i - 1, i+1,..., n) from (pi(1) (1),..., pi(1)(i - 1), pi(1)(i+1),..., pi(1)(n)) and (pi(2) (1),..., pi(2) (i - 1), pi(2)(i+1),..., pi(2) (n)). We further prove that W-n,W-pi 1,W-pi 2 is not comparable with W-n,W-pi,W- which is the entanglement witness constructed from a single permutation pi; W-n,W-pi 1,W-pi 2 is decomposable if pi(1)pi(2) = id or pi(2)(1) = pi(2)(2) = id. For the low dimensional cases n 2 {3, 4}, we give a sufficient and necessary condition on pi(1), pi(2) for W-n,W-pi 1,W-pi 2 to be an entanglement witness. We also show that, for n is an element of {3, 4}, W-n,W-pi 1,W-pi 2 is decomposable if and only if pi(1)pi(2) = id or pi(2)(1) = pi(2)(2) = id; W-3,W-pi 1,W-pi 2 is optimal if and only if (pi(1), pi(2)) = (pi, pi(2)), where pi = (2, 3, 1). As applications, some entanglement criteria for states and some decomposability criteria for positive maps are established.
引用
收藏
页码:843 / 874
页数:32
相关论文
共 50 条
  • [21] Entanglement witnesses generated by positive maps
    Wei Yang
    Quantum Information Processing, 2015, 14 : 287 - 301
  • [22] Geometry of Entanglement Witnesses for Two Qutrits
    Chruscinski, Dariusz
    Wudarski, Filip A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2011, 18 (04) : 375 - 387
  • [23] Using non-positive maps to characterize entanglement witnesses
    Mozrzymas, Marek
    Rutkowski, Adam
    Studzinski, Michal
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (39)
  • [24] Multipartite Entanglement Witnesses
    Sperling, J.
    Vogel, W.
    PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [25] Quantitative entanglement witnesses of isotropic and Werner classes via local measurements
    Silvi, P.
    Taddei, F.
    Fazio, R.
    Giovannetti, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
  • [26] NECESSARY CONDITIONS FOR OPTIMALITY OF DECOMPOSABLE ENTANGLEMENT WITNESSES
    Kye, Seung-Hyeok
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (03) : 419 - 426
  • [27] CHARACTERIZATION AND PROPERTIES OF WEAKLY OPTIMAL ENTANGLEMENT WITNESSES
    Wang, Bang-Hai
    Xu, Hai-Ru
    Campbell, Steve
    Severini, Simone
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (13-14) : 1109 - 1121
  • [28] Direct Measurements of Entanglement and Permutation Symmetry
    van Enk, S. J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [29] Closing the detection loophole in nonlinear entanglement witnesses
    Sen, Kornikar
    Das, Sreetama
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [30] Entanglement witnesses for indistinguishable particles
    Reusch, A.
    Sperling, J.
    Vogel, W.
    PHYSICAL REVIEW A, 2015, 91 (04):