Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes

被引:18
作者
Jeong, Jin Gyo [1 ]
Choi, Sangtae [2 ]
Kim, Young Jae [3 ]
Lee, Won-Suk [4 ]
Kim, Kwang Gi [1 ,3 ]
机构
[1] Gachon Univ, Dept Hlth Sci & Technol, GAIHST, Incheon 21999, South Korea
[2] Gachon Univ, Gil Med Ctr, Dept Surg & Liver Transplantat, Incheon 21565, South Korea
[3] Gachon Univ, Coll Med, Gil Med Ctr, Dept Biomed Engn, Incheon 21565, South Korea
[4] Gachon Univ, Coll Med, Gil Med Ctr, Dept Surg, Incheon 21565, South Korea
关键词
SURVIVAL; TERM;
D O I
10.1038/s41598-022-09978-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living-donor liver transplantation, the safety of the donor is critical. In addition, accurately measuring the liver volume is significant as the amount that can be resected from living donors is limited. In this paper, we propose an automated segmentation and volume estimation method for the liver in computed tomography imaging based on a deep learning-based segmentation network. Our framework was trained using the data of 191 donors, achieved a dice similarity coefficient of 0.789, 0.869, 0.955, and 0.899, respectively, in the segmentation task for the left lobe, right lobe, caudate lobe, and whole liver. Moreover, the R boolean AND 2 score reached 0.980, 0.996, 0.953, and 0.996 in the volume estimation task. We demonstrate that our approach provides accurate and quantitative liver segmentation results, reducing the error in liver volume estimation. Therefore, we expected to be used as an aid in estimating liver volume from CT volume data for living-donor liver transplantation.
引用
收藏
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2015, ARXIV150502496
[2]  
[Anonymous], 2015, arXiv
[3]  
[Anonymous], 2018, BMVC
[4]   Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches [J].
Bae, Kyongtae T. .
RADIOLOGY, 2010, 256 (01) :32-61
[5]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[6]  
Chen J., Advances in Neural Information Processing Systems, P3036
[7]   Liver Resection for Metastatic Disease; A Population-Based Analysis of Trends [J].
de Ridder, J. A. M. ;
Lemmens, V. E. P. P. ;
Overbeek, L. I. H. ;
Nagtegaal, I. D. ;
de Wilt, J. H. W. .
DIGESTIVE SURGERY, 2016, 33 (02) :104-113
[8]   Safety of donors in live donor liver transplantation using right lobe grafts [J].
Fan, ST ;
Lo, CM ;
Liu, CL ;
Yong, BH ;
Chan, JKF ;
Ng, IOL .
ARCHIVES OF SURGERY, 2000, 135 (03) :336-340
[9]   Liver segmentation: indications, techniques and future directions [J].
Gotra, Akshat ;
Sivakumaran, Lojan ;
Chartrand, Gabriel ;
Kim-Nhien Vu ;
Vandenbroucke-Menu, Franck ;
Kauffmann, Claude ;
Kadoury, Samuel ;
Gallix, Benoit ;
de Guise, Jacques A. ;
Tang, An .
INSIGHTS INTO IMAGING, 2017, 8 (04) :377-392
[10]   Fulminant hepatic failure: etiology and indications for liver transplantation [J].
Gotthardt, Daniel ;
Riediger, Carina ;
Weiss, Karl Heinz ;
Encke, Jens ;
Schemmer, Peter ;
Schmidt, Jan ;
Sauer, Peter .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2007, 22 :5-8