THE CONTROL OF PARASITISM IN G-SYMPLECTIC METHODS

被引:23
作者
Butcher, John C. [1 ]
Habib, Yousaf [2 ]
Hill, Adrian T. [3 ]
Norton, Terence J. T. [3 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Natl Univ Sci & Technol, Sch Nat Sci, Islamabad, Pakistan
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
general linear methods; symplectic; parasitism; CONJUGATE-SYMPLECTICITY; DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION; MULTISTEP METHODS;
D O I
10.1137/140953277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
G-symplectic general linear methods are designed to approximately preserve symplectic invariants for Hamiltonian systems. In this paper, the properties of G-symplectic methods are explored computationally and theoretically. Good preservation properties are observed over long times for many parameter ranges, but, for other parameter values, the parasitic behavior, to which multivalue methods are prone, corrupts the numerical solution by the growth of small perturbations. Two approaches for alleviating this effect are considered. First, compositions of methods with growth parameters of opposite signs can be used to cancel the long-term effect of parasitism. Second, methods can be constructed for which the growth parameters are zero by design. Each of these remedies is found to be successful in eliminating parasitic behavior in long-term simulations using a variety of test problems.
引用
收藏
页码:2440 / 2465
页数:26
相关论文
共 27 条