Robust fixed-order dynamic output feedback controller design for fractional-order systems

被引:24
作者
Badri, Pouya [1 ]
Sojoodi, Mahdi [1 ]
机构
[1] Tarbiat Modares Univ, Sch Elect & Comp Engn, Adv Control Syst Lab, Tehran, Iran
关键词
robust control; feedback; control system synthesis; linear matrix inequalities; uncertain systems; linear systems; state-space methods; robust fixed-order dynamic output feedback controller design; uncertain fractional-order linear time-invariant systems; LMI-based approach; robust stabilising control; state space matrices; SMALL GAIN; STABILITY; STABILIZATION; IDENTIFICATION; POSITIVITY; CIRCLE;
D O I
10.1049/iet-cta.2017.0608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study deals with designing a robust fixed-order dynamic output feedback controller for uncertain fractional-order linear time-invariant systems by means of linear matrix inequalities (LMIs). The authors' purpose is to design a low-order controller that stabilises the fractional-order linear system in the presence of model uncertainties. No limiting constraint on the state space matrices of the uncertain system is assumed in the design procedure. Furthermore, adopting the most complete model of linear controller, with direct feedthrough parameter, does not disturb the LMI-based approach of developing robust stabilising control. Eventually, the authors illustrate the advantages of the proposed method by some examples and their numerical simulation.
引用
收藏
页码:1236 / 1243
页数:8
相关论文
共 32 条
[1]   Robust fixed-order dynamic output feedback controller design for nonlinear uncertain suspension system [J].
Badri, Pouya ;
Amini, Amir ;
Sojoodi, Mandi .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 80 :137-151
[2]   Some Analytical Results on Tuning Fractional-Order [Proportional-Integral] Controllers for Fractional-Order Systems [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (03) :1059-1066
[3]   Achievable Performance Region for a Fractional-Order Proportional and Derivative Motion Controller [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) :7171-7180
[4]   Fractional order control of thermal systems: achievability of frequency-domain requirements [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
NONLINEAR DYNAMICS, 2015, 80 (04) :1773-1783
[5]   On tuning fractional order [proportional-derivative] controllers for a class of fractional order systems [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
AUTOMATICA, 2013, 49 (07) :2297-2301
[6]   Convex Lyapunov functions for stability analysis of fractional order systems [J].
Chen, Weisheng ;
Dai, Hao ;
Song, Yanfei ;
Zhang, Zhengqiang .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (07) :1070-1074
[7]   Pseudo-state feedback stabilization of commensurate fractional order systems [J].
Farges, Christophe ;
Moze, Mathieu ;
Sabatier, Jocelyn .
AUTOMATICA, 2010, 46 (10) :1730-1734
[8]   Identification of a thermal system using continuous linear parameter-varying fractional modelling [J].
Gabano, J. -D. ;
Poinot, T. ;
Kanoun, H. .
IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07) :889-899
[9]   Output feedback disk pole assignment for systems with positive real uncertainty [J].
Garcia, G ;
Daafouz, J ;
Bernussou, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (09) :1385-1391
[10]   ROBUST STABILIZATION WITH POSITIVE REAL UNCERTAINTY - BEYOND THE SMALL GAIN THEOREM [J].
HADDAD, WM ;
BERNSTEIN, DS .
SYSTEMS & CONTROL LETTERS, 1991, 17 (03) :191-208