Sensitivity analysis of the result in binary decision trees

被引:0
作者
Alvarez, I
机构
[1] Univ Paris 06, LIP6, F-75005 Paris, France
[2] Cemagref LISC, F-63172 Aubiere, France
来源
MACHINE LEARNING: ECML 2004, PROCEEDINGS | 2004年 / 3201卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new method to qualify the result given by a decision tree when it is used as a decision aid system. When the data are numerical, we compute the distance of a case from the decision surface. This distance measures the sensitivity of the result to a change in the input data. With a different distance it is also possible to measure the sensitivity of the result to small changes in the tree. The distance from the decision surface can also be combined to the error rate in order to provide a context-dependent information to the end-user.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 22 条
[1]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[2]  
BENNETT K, 1996, 214 RPI MATH SCI DEP
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[5]  
Cestnik B., 1990, P EUR C ART INT, P147
[6]  
Domingos P, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P564
[7]  
Domingos P., 1999, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P155
[8]  
DOMINGOS P, 2000, 0004IS CDER STERN SC
[9]   A comparative analysis of methods for pruning decision trees [J].
Esposito, F ;
Malerba, D ;
Semeraro, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (05) :476-491
[10]   HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM [J].
JORDAN, MI ;
JACOBS, RA .
NEURAL COMPUTATION, 1994, 6 (02) :181-214