Vortex pinning with bounded fields for the Ginzburg-Landau equation

被引:25
作者
Andre, N
Bauman, P
Phillips, D [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Tours, Dept Math, F-37200 Tours, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0294-1449(02)00021-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate vortex pinning in solutions to the Ginzburg-Landau equation. The coefficient, a (x), in the Ginzburg-Landau free energy modeling non-uniform superconductivity is nonnegative and is allowed to vanish at a finite number of points. For a sufficiently large applied magnetic field and for all sufficiently large values of the Ginzburg-Landau parameter kappa = 1/epsilon, we show that minimizers have nontrivial vortex structures. We also show the existence of local minimizers exhibiting arbitrary vortex patterns, pinned near the zeros of a (x). (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:705 / 729
页数:25
相关论文
共 14 条
[11]   Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents [J].
Rubinstein, J ;
Sternberg, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) :257-263
[12]  
SANDIER E, IN PRESS ANAL LINEAI
[13]  
SANDIER E, IN PRESS REV MATH PH
[14]  
SCHOEN R, 1983, J DIFFER GEOM, V18, P253