Vortex pinning with bounded fields for the Ginzburg-Landau equation

被引:25
作者
Andre, N
Bauman, P
Phillips, D [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Tours, Dept Math, F-37200 Tours, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0294-1449(02)00021-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate vortex pinning in solutions to the Ginzburg-Landau equation. The coefficient, a (x), in the Ginzburg-Landau free energy modeling non-uniform superconductivity is nonnegative and is allowed to vanish at a finite number of points. For a sufficiently large applied magnetic field and for all sufficiently large values of the Ginzburg-Landau parameter kappa = 1/epsilon, we show that minimizers have nontrivial vortex structures. We also show the existence of local minimizers exhibiting arbitrary vortex patterns, pinned near the zeros of a (x). (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:705 / 729
页数:25
相关论文
共 14 条
[1]  
AFTALION A, PINNING PHENOMENA GI
[2]   THE APPROXIMATION PROBLEM FOR SOBOLEV MAPS BETWEEN 2 MANIFOLDS [J].
BETHUEL, F .
ACTA MATHEMATICA, 1991, 167 (3-4) :153-206
[3]  
Chapman S. J., 1995, EUR J APPL MATH, V6, P97
[4]   Vortex pinning by inhomogeneities in type-II superconductors [J].
Chapman, SJ ;
Richardson, G .
PHYSICA D, 1997, 108 (04) :397-407
[5]   The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model [J].
Giorgi, T ;
Phillips, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (02) :341-359
[6]  
JAFFE A, 1980, VORTICES MONOPOLES S
[7]   Lower bounds for generalized Ginzburg-Landau functionals [J].
Jerrard, RL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (04) :721-746
[8]   Ginzburg-Landau equation with magnetic effect: non-simply-connected domains [J].
Jimbo, S ;
Zhai, J .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (03) :663-684
[9]   Ginzburg-Landau equations and stable solutions in a rotational domain [J].
Jimbo, S ;
Morita, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) :1360-1385
[10]   SUPERCONDUCTING WEAK LINKS [J].
LIKHAREV, KK .
REVIEWS OF MODERN PHYSICS, 1979, 51 (01) :101-159