Optimal control of nonlinear Fredholm integral equations

被引:7
作者
Roubicek, T [1 ]
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
关键词
nonlinear integral equations; optimal control in L-p-spaces; relaxation; existence; stability; nonconcentration; optimality conditions; Pontryagin maximum principle;
D O I
10.1023/A:1022650427993
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimal control problems with nonlinear equations usually do not possess optimal solutions, so that their natural (i.e., continuous) extension (relaxation) must be done. The relaxed problem may also serve to derive first-order necessary optimality condition in the form of the Pontryagin maximum principle. This is done here for nonlinear Fredholm integral equations and problems coercive in an L-p-space of controls with p<+infinity. Results about a continuous extension of the Uryson operator play a key role.
引用
收藏
页码:707 / 729
页数:23
相关论文
共 20 条
[1]  
Aizicovici S, 1995, WORLD CONGRESS OF NONLINEAR ANALYSIS '92, VOLS 1-4, P2617
[2]   OPTIMAL-CONTROL OF SYSTEMS GOVERNED BY NONLINEAR VOLTERRA EQUATIONS [J].
ANGELL, TS .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (01) :29-45
[3]   A Maximum Principle for an Optimal Control Problem with Integral Constraints [J].
Bakke, V. L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (01) :32-55
[4]  
Bittner L., 1975, Mathematische Operationsforschung und Statistik, V6, P107, DOI 10.1080/02331887508801203
[6]   BOUNDARY CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS WITH POINTWISE STATE CONSTRAINTS [J].
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :993-1006
[7]  
CHRYSSOVERGHI I, 1976, THESIS EPF LAUSANNE
[8]  
Corduneanu C., 1991, Integral Equations and Applications
[9]  
GABASOV R, 1974, PRINCIPLE MAXIMUM TH
[10]  
Krasnosel'skii M. A., 1966, Integral operators in spaces of summable functions