On a competitive system with ideal free dispersal

被引:8
作者
Cantrell, Robert Stephen [1 ]
Cosner, Chris [1 ]
Martinez, Salome [2 ,3 ]
Torres, Nicolas [2 ,3 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[2] Univ Chile, Dept Ingn Matemat, Blanco Encalada 2120,5 Piso, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS UChile 2807, Casilla 170 Correo 3, Santiago, Chile
基金
美国国家科学基金会;
关键词
EVOLUTIONARY STABILITY;
D O I
10.1016/j.jde.2018.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the long term behavior of the competitive system {partial derivative u/partial derivative t = del . [alpha(x) del u/m] + u(m(x) - u - bv) in Omega, t > 0, partial derivative u/partial derivative t = del . [beta(x) del v] +v(m(x) - cu - v) in Omega, t > 0, del u/m . (n) over cap = del v. (n) over cap = 0 on partial derivative Omega, t > 0, which supports for the first species an ideal free distribution, that is a positive steady state which matches the per-capita growth rate. Previous results have stated that when b = c = 1 the ideal free distribution is an evolutionarily stable and neighborhood invader strategy, that is the species with density v always goes extinct. Thus, of particular interest will be to study the interplay between the inter-specific competition coefficients b, c and the diffusion coefficients alpha(x) and beta(x) on the critical values for stability of semi-trivial steady states, and the structure of bifurcation branches of positive equilibria arising from these equilibria. We will also show that under certain regimes the system sustains multiple positive steady states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:3464 / 3493
页数:30
相关论文
共 16 条
[1]   On several conjectures from evolution of dispersal [J].
Averill, Isabel ;
Lou, Yuan ;
Munther, Dan .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :117-130
[2]  
Cantrell R.S., 2012, Can. Appl. Math. Q, V20, P15
[3]   Approximating the ideal free distribution via reaction-diffusion-advection equations [J].
Cantrell, Robert Stephen ;
Cosner, Chris ;
Lou, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) :3687-3703
[4]   Random dispersal versus fitness-dependent dispersal [J].
Cantrell, Robert Stephen ;
Cosner, Chris ;
Lou, Yuan ;
Xie, Chao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2905-2941
[5]   EVOLUTION OF DISPERSAL AND THE IDEAL FREE DISTRIBUTION [J].
Cantrell, Robert Stephen ;
Cosner, Chris ;
Lou, Yuan .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) :17-36
[6]  
Cantrell RS., 2004, Spatial Ecology via ReactionDiffusion Equations
[7]   Evolution of conditional dispersal: a reaction-diffusion-advection model [J].
Chen, Xinfu ;
Hambrock, Richard ;
Lou, Yuan .
JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) :361-386
[8]   Evolutionary stability of ideal free nonlocal dispersal [J].
Cosner, Chris ;
Davila, Juan ;
Martinez, Salome .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :395-405
[9]  
DANCER EN, 1991, J REINE ANGEW MATH, V419, P125
[10]   STABILITY AND CONVERGENCE IN STRONGLY MONOTONE DYNAMICAL-SYSTEMS [J].
HIRSCH, MW .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 383 :1-53