Scattering for the non-radial energy-critical inhomogeneous NLS

被引:14
作者
Guzman, Carlos M. [1 ]
Murphy, Jason [2 ]
机构
[1] Univ Fed Fluminense, Dept Math, Niteroi, RJ, Brazil
[2] Missouri S&T, Dept Math & Stat, Rolla, MO 65409 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; GROUND-STATE; BLOW-UP; PROOF; SPACE;
D O I
10.1016/j.jde.2021.05.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove scattering below the ground state threshold for an energy-critical inhomogeneous nonlinear Schrodinger equation in three space dimensions. In particular, we extend results of Cho, Hong, and Lee [8,9] from the radial to the non-radial setting. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 210
页数:24
相关论文
共 41 条
[1]   Blowup and scattering problems for the nonlinear Schrodinger equations [J].
Akahori, Takafumi ;
Nawa, Hayato .
KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) :629-672
[2]   SCATTERING BELOW THE GROUND STATE FOR THE 2d RADIAL NONLINEAR SCHRODINGER EQUATION [J].
Arora, Anudeep Kumar ;
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) :1653-1663
[3]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[4]   Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation [J].
Campos, Luccas .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[5]  
Cardoso M., ARXIV200706165
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]  
Cazenave T., 2003, Semilinear Schrodinger Equations, V10
[8]  
Cho Y., ARXIV200212355
[9]  
Cho Y., ARXIV190510063
[10]  
Dinh V.D., ARXIV190802987