Approximation of the finite dimensional distributions of multiple fractional integrals

被引:3
作者
Bardina, Xavier [2 ]
Es-Sebaiy, Khalifa [3 ]
Tudor, Ciprian A. [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
[3] Univ Paris 01, SAMM, F-75634 Paris, France
关键词
Multiple stochastic integrals; Limit theorems; Fractional Brownian motion; Weak convergence; WEAK-CONVERGENCE;
D O I
10.1016/j.jmaa.2010.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family I-n, < f >(t) of continuous stochastic processes that converges in the sense of finite dimensional distributions to a multiple Wiener-Ito integral I-n(H)(f1(vertical bar 0,t vertical bar)(circle times n)) with respect to the fractional Brownian motion. We assume that H > 1/2 and we prove our approximation result for the integrands f in a rather general class. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:694 / 711
页数:18
相关论文
共 10 条
[2]   Weak convergence to the multiple Stratonovich integral [J].
Bardina, X ;
Jolis, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :277-300
[3]   Convergence in law to the multiple fractional integral [J].
Bardina, X ;
Jolis, M ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 105 (02) :315-344
[4]   Weak approximation of a fractional SDE [J].
Bardina, X. ;
Nourdin, I. ;
Rovira, C. ;
Tindel, S. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (01) :39-65
[5]   On the convergence to the multiple Wiener-Ito integral [J].
Bardina, Xavier ;
Jolis, Maria ;
Tudor, Ciprian A. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (03) :257-271
[6]  
KAC M., 1974, Rocky Mountain J. Math., V4, P497, DOI [10.1216/RMJ-1974-4-3-497, DOI 10.1216/RMJ-1974-4-3-497]
[7]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
[8]  
Pérez-Abreu V, 2002, BOL SOC MAT MEX, V8, P187
[9]  
SANZSOLE M, 2007, LARGE DEVIATION PRIN
[10]  
Stroock D., 1982, TOPICS STOCHASTIC DI