Estimating the variance of the predictor in stochastic Kriging

被引:13
作者
Kleijnen, Jack P. C. [1 ]
Mehdad, Ehsan [1 ]
机构
[1] Tilburg Univ, Tilburg Sch Econ & Management, NL-5000 LE Tilburg, Netherlands
关键词
Kriging; Gaussian process; Predictor variance; Plug-in; Bootstrap; PARAMETER-ESTIMATION; SIMULATION; DESIGN;
D O I
10.1016/j.simpat.2016.03.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the estimation of the true variance of the predictor in stochastic Kriging (SK). First, we obtain macroreplications for a SK metamodel that approximates a single-server simulation model; these macroreplications give independently and identically distributed predictions. This simulation may use common random numbers (CRN). From these macroreplications we conclude that the usual plug-in estimator of the variance significantly underestimates the true variance. Because macroreplications of practical simulation models are computationally expensive, we next formulate two bootstrap methods that use a single macroreplication: (i) a distribution-free method that resamples simulation replications (within the single macroreplication), and (ii) a parametric method that assumes a Gaussian distribution for the SK predictor, and estimates the (hyper) parameters of that distribution from the single macroreplication. Altogether we recommend distribution-free bootstrapping for the estimation of the SK predictor variance in practical simulation experiments. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 26 条
[1]   Estimating the prediction mean squared error in Gaussian stochastic processes with exponential correlation structure [J].
Abt, M .
SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (04) :563-578
[2]   Stochastic Kriging for Simulation Metamodeling [J].
Ankenman, Bruce ;
Nelson, Barry L. ;
Staum, Jeremy .
OPERATIONS RESEARCH, 2010, 58 (02) :371-382
[3]  
[Anonymous], 2015, DESIGN ANAL SIMULATI
[4]   Quantifying Input Uncertainty via Simulation Confidence Intervals [J].
Barton, Russell R. ;
Nelson, Barry L. ;
Xie, Wei .
INFORMS JOURNAL ON COMPUTING, 2014, 26 (01) :74-87
[5]  
Bekki JM, 2014, WINT SIMUL C PROC, P3880, DOI 10.1109/WSC.2014.7020214
[6]   Stochastic Kriging with Biased Sample Estimates [J].
Chen, Xi ;
Kim, Kyoung-Kuk .
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (02)
[7]  
Cousin A., 2015, KRIGING FINANCIALTER
[8]   Parameter Estimation of a Multistate Model for an Aging Piece of Equipment under Condition-Based Maintenance [J].
Duan, Qihong ;
Chen, Xiang ;
Zhao, Dengfu ;
Zhao, Zheng .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[9]  
DYKSTRA RL, 1970, ANN MATH STAT, V41, P2153, DOI 10.1214/aoms/1177696719
[10]  
Goldberg PW, 1998, ADV NEUR IN, V10, P493