Improved estimates for the approximation numbers of Hardy-type operators

被引:23
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation numbers; Hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/S0021-9045(02)00043-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type integral operator T : L-p (a,b) L-p (a, b), -infinity less than or equal to a < b less than or equal to infinity, which is defined by (Tf)(x) = v(x) integral(a)(x) u(t)f(t) dt. In the papers by Edmunds et a]. (J. London Math. Soc. (2) 37 (1988) 471) and Evans et a]. (Studia Math. 130 (2) (1998) 171) upper and lower estimates and asymptotic results were obtained for the approximation numbers a(n) (T) of T. In case p = 2 for "nice" u and v these results were improved in Edmunds et al. (J. Anal. Math. 85 (2001) 225). In this paper, we extend these results for 1 < p < infinity by using a new technique. We will show that under suitable conditions on u and v, lim(n-->infinity)sup n(1/2)\lambda(p)(-1/p) integral(a)(b) \u(t)v(t)\ dt - na(n) (T)\ less than or equal to c(\\u'\\(p'/p'+1)) + \\upsilon'\\(p/(p+1)))(\\u\\(p') + \\upsilon\\(p)) + 3alpha(p) \\uv\\(1), where \\w\\(p) = (integral(a)(b)\w(t)\(p) dt)(1/p) and lambda(p) is the first eigenvalue of the p-Laplacian eigenvalue f", problem on (0, 1). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 12 条
[1]  
Edmunds DE, 1997, STUD MATH, V124, P59
[2]  
EDMUNDS DE, 1994, STUD MATH, V109, P73
[3]   Remainder estimates for the approximation numbers of weighted hardy operators acting on L2 [J].
Edmunds, DE ;
Kerman, R ;
Lang, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :225-243
[4]  
EDMUNDS DE, 1988, J LOND MATH SOC, V37, P471
[5]  
EDMUNDS DE, 0213 MRI OH STAT U
[6]  
Evans WD, 1998, STUD MATH, V130, P171
[7]   The approximation numbers of hardy-type operators on trees [J].
Evans, WD ;
Harris, DJ ;
Lang, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :390-418
[8]  
LANG J, ASYMPTOTIC BEHAV APP
[9]  
LIFSHITS MA, 1999, MATHINF9927 U JEN
[10]   2-SIDED ESTIMATES ON SINGULAR-VALUES FOR A CLASS OF INTEGRAL-OPERATORS ON THE SEMI-AXIS [J].
NEWMAN, J ;
SOLOMYAK, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 20 (03) :335-349