Reasoning over temporal knowledge graph with temporal consistency constraints

被引:8
|
作者
Chen, Xiaojun [1 ]
Jia, Shengbin [1 ]
Ding, Ling [1 ]
Xiang, Yang [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Knowledge graph reasoning; temporal information; temporal consistency constraints; integer linear programming;
D O I
10.3233/JIFS-210064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph reasoning or completion aims at inferring missing facts by reasoning about the information already present in the knowledge graph. In this work, we explore the problem of temporal knowledge graph reasoning that performs inference on the graph over time. Most existing reasoning models ignore the time information when learning entities and relations representations. For example, the fact (Scarlett Johansson, spouse Of, Ryan Reynolds) was true only during 2008 - 2011. To facilitate temporal reasoning, we present TA-TransR(ILP), which involves temporal information by utilizing RNNs and takes advantage of Integer Linear Programming Specifically, we utilize a character-level long short-term memory network to encode relations with sequences of temporal tokens, and combine it with common reasoning model. To achieve more accurate reasoning, we further deploy temporal consistency constraints to basic model, which can help in assessing the validity of a fact better. We conduct entity prediction and relation prediction on YAGO11k and Wikidata12k datasets. Experimental results demonstrate that TA-TransR(ILP) can make more accurate predictions by taking time information and temporal consistency constraints into account, and outperforms existing methods with a significant improvement about 6-8% on Hits @ 10.
引用
收藏
页码:11941 / 11950
页数:10
相关论文
共 50 条
  • [21] RE-SEGNN: recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting
    Cai, Wenyu
    Li, Mengfan
    Shi, Xuanhua
    Fan, Yuanxin
    Zhu, Quntao
    Jin, Hai
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (02)
  • [22] ARL: analogical reinforcement learning for knowledge graph reasoning
    Xia, Nan
    Wang, Yin
    Zhang, Run-Fa
    Luo, Xiangfeng
    DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 39 (01) : 1 - 22
  • [23] A collaborative learning framework for knowledge graph embedding and reasoning
    Wang, Hao
    Song, Dandan
    Wu, Zhijing
    Li, Jia
    Zhou, Yanru
    Xu, Jing
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [24] A review of graph neural networks and pretrained language models for knowledge graph reasoning
    Ma, Jiangtao
    Liu, Bo
    Li, Kunlin
    Li, Chenliang
    Zhang, Fan
    Luo, Xiangyang
    Qiao, Yaqiong
    NEUROCOMPUTING, 2024, 609
  • [25] Multi-hop Knowledge Graph Reasoning Based on Hyperbolic Knowledge Graph Embedding and Reinforcement Learning
    Zhou, Xingchen
    Wang, Peng
    Luo, Qiqing
    Pan, Zhe
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 1 - 9
  • [26] Exploring temporal consistency for human pose estimation in videos
    Li, Yang
    Li, Kan
    Wang, Xinxin
    Da Xu, Richard Yi
    PATTERN RECOGNITION, 2020, 103
  • [27] Adaptive Graph Neural Network with Incremental Learning Mechanism for Knowledge Graph Reasoning
    Zhang, Junhui
    Zan, Hongying
    Wu, Shuning
    Zhang, Kunli
    Huo, Jianwei
    ELECTRONICS, 2024, 13 (14)
  • [28] Temporal Graph Neural Networks for Social Recommendation
    Bai, Ting
    Zhang, Youjie
    Wu, Bin
    Nie, Jian-Yun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 898 - 903
  • [29] A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multi-Modal
    Liang, Ke
    Meng, Lingyuan
    Liu, Meng
    Liu, Yue
    Tu, Wenxuan
    Wang, Siwei
    Zhou, Sihang
    Liu, Xinwang
    Sun, Fuchun
    He, Kunlun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9456 - 9478
  • [30] Target relational attention-oriented knowledge graph reasoning
    Zhao, Xiaojuan
    Jia, Yan
    Li, Aiping
    Jiang, Rong
    Chen, Kai
    Wang, Ye
    NEUROCOMPUTING, 2021, 461 : 577 - 586