Approximate realization of hidden Markov chains

被引:5
作者
Finesso, L [1 ]
Spreij, P [1 ]
机构
[1] CNR, LADSEB, Inst Syst Sci & Bioengn, I-35127 Padua, Italy
来源
PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP | 2002年
关键词
D O I
10.1109/ITW.2002.1115424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the approximate realization problem for finite valued hidden Markov models i.e. stochastic processes Y = f (X) where X is a finite state Markov chain and f a many-to-one function. Given the laws py(.) of Y the weak realization problem consists in finding a Markov chain X and a function f such that, at least. distributionally, Y similar to f (X). The approximate realization problem consists in finding X and f such that Y and f (X) are close. The approximation criterion we use is the informational divergence between properly defined non-negative (componentwise) matrices related to the processes. To construct the realization we apply recent results on the approximate factorization of nonnegative matrices.
引用
收藏
页码:90 / 93
页数:4
相关论文
共 50 条
[21]   Transportation inequalities for hidden Markov chains and applications [J].
Hu ShuLan .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (05) :1027-1042
[22]   Transportation inequalities for hidden Markov chains and applications [J].
ShuLan Hu .
Science China Mathematics, 2011, 54 :1027-1042
[23]   Analyticity of entropy rate of hidden Markov chains [J].
Han, Guangyue ;
Marcus, Brian .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5251-5266
[24]   A local limit theorem for hidden Markov chains [J].
Maxwell, M ;
Woodroofe, M .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) :125-131
[25]   On hidden Markov chains and finite stochastic systems [J].
Spreij, P .
STATISTICS & PROBABILITY LETTERS, 2003, 62 (02) :189-202
[26]   Estimation of Hidden Markov Chains by a Neural Network [J].
Ito, Yoshifusa ;
Izumi, Hiroyuki ;
Srinivasan, Cidambi .
NEURAL INFORMATION PROCESSING (ICONIP 2014), PT I, 2014, 8834 :602-609
[27]   Hidden Markov chains in generalized linear models [J].
Turner, TR ;
Cameron, MA ;
Thomson, PJ .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01) :107-125
[28]   A local limit theorem for hidden Markov chains [J].
Maxwell, M. ;
Woodroofe, M. .
Statistics & Probability Letters, 32 (02)
[29]   Conditional heteroskedasticity driven by hidden Markov chains [J].
Francq, C ;
Roussignol, M ;
Zakoïan, JM .
JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (02) :197-220
[30]   Filtering hidden semi-Markov chains [J].
Elliott, Robert ;
Limnios, Nikolaos ;
Swishchuk, Anatoliy .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) :2007-2014