The Navarro refinement of the McKay conjecture for finite groups of Lie type in defining characteristic

被引:7
作者
Ruhstorfer, Lucas [1 ]
机构
[1] TU Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
基金
英国工程与自然科学研究理事会;
关键词
McKay conjecture; Groups of Lie type;
D O I
10.1016/j.jalgebra.2021.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we verify Navarro's refinement of the McKay conjecture for quasi-simple groups of Lie type in their defining characteristic. Navarro's refinement takes into account the action of specific Galois automorphisms on the characters presents inthe McKay conjecture [12]. Our proof of this case of the conjecture relies on a character correspondence constructed by Maslowski in [11]. Building on this we verify the inductive condition for Navarro's refinement from [14] for most groups of Lie type in defining characteristic. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 205
页数:29
相关论文
共 22 条
[1]  
Carter R. W., 1985, FINITE GROUPS LIE TY
[2]  
DIGNE F, 1994, ANN SCI ECOLE NORM S, V27, P345
[3]  
DIGNE F, 1992, J REINE ANGEW MATH, V425, P155
[4]  
Digne F., 2020, LONDON MATH SOC STUD, V95
[5]   Fake Galois actions [J].
Farrell, Niamh ;
Ruhstorfer, Lucas .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (08)
[6]   GALOIS AUTOMORPHISMS ON HARISH-CHANDRA SERIES AND NAVARRO'S SELF-NORMALIZING SYLOW 2-SUBGROUP CONJECTURE [J].
Fry, A. A. Schaeffer .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) :457-483
[7]   DEGREES OF STEINBERG CHARACTERS OF CHEVALLEY GROUPS [J].
HOWLETT, RB .
MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (02) :125-135
[8]   A reduction theorem for the McKay conjecture [J].
Isaacs, I. M. ;
Malle, Gunter ;
Navarro, Gabriel .
INVENTIONES MATHEMATICAE, 2007, 170 (01) :33-101
[9]  
Isaacs I.M., 2013, Character Theory of Finite Groups, Dover Books on Mathematics
[10]  
Lehrer G. I., 1978, OSAKA J MATH, V15, P77