On the independence of expansions of algebraic numbers in an integer base

被引:3
|
作者
Adamczewski, Boris
Bugeaud, Yann
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
D O I
10.1112/blms/bdl036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b >= 2 be an integer. According to a conjecture of Emile Borel, the b-adic expansion of any irrational algebraic number behaves in some respects 'like a random sequence'. We give a contribution to the following related problem: let alpha and alpha' be irrational algebraic numbers, then prove that their b-adic expansions either have the same tail, or behave in some respects 'like independent random sequences'.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 50 条