Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs

被引:79
|
作者
Zhu, Jiejie [1 ,2 ]
Wang, Liang [2 ]
Gao, Jizhou [2 ]
Yang, Ruigang [2 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32826 USA
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40507 USA
基金
美国国家科学基金会;
关键词
Stereo; MRFs; time-of-flight sensor; data fusion; global optimization; BELIEF PROPAGATION; STEREO; FIELDS;
D O I
10.1109/TPAMI.2009.68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-of-flight range sensors and passive stereo have complimentary characteristics in nature. To fuse them to get high accuracy depth maps varying over time, we extend traditional spatial MRFs to dynamic MRFs with temporal coherence. This new model allows both the spatial and the temporal relationship to be propagated in local neighbors. By efficiently finding a maximum of the posterior probability using Loopy Belief Propagation, we show that our approach leads to improved accuracy and robustness of depth estimates for dynamic scenes.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 50 条
  • [31] Spatial-temporal attention fusion for traffic speed prediction
    Zhang, Anqin
    Liu, Qizheng
    Zhang, Ting
    SOFT COMPUTING, 2022, 26 (02) : 695 - 707
  • [32] High-accuracy stereo depth maps using structured light
    Scharstein, D
    Szeliski, R
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 195 - 202
  • [33] Depth Filter Design by Jointly Utilizing Spatial-Temporal Depth and Texture Information
    Wang, Xin
    Zhu, Ce
    Li, Shuai
    Xiao, Jimin
    Tillo, Tammam
    2015 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2015,
  • [34] Dense-depth-net: a spatial-temporal approach on depth completion task
    Nguyen, Tri
    Yoo, Myungsik
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [35] Dynamic-Static Fusion for Spatial-Temporal Anomaly Detection and Interpretation in Multivariate Time Series
    Ding, Guohui
    Zhu, Yueyi
    Ren, Yongqiang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 46 - 61
  • [36] Deep Spatial-Temporal Feature Fusion From Adaptive Dynamic Functional Connectivity for MCI Identification
    Li, Yang
    Liu, Jingyu
    Tang, Zhenyu
    Lei, Baiying
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (09) : 2818 - 2830
  • [37] Human Action Recognition for Dynamic Scenes of Emergency Rescue Based on Spatial-Temporal Fusion Network
    Zhang, Yongmei
    Guo, Qian
    Du, Zhirong
    Wu, Aiyan
    ELECTRONICS, 2023, 12 (03)
  • [38] Deep spatial-temporal information fusion dynamic graph convolutional network for traffic flow prediction
    Li, Guoyan
    Wang, Wei
    Wang, Li
    Liu, Yi
    Zhang, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [39] SPATIAL AND TEMPORAL VARIATIONS IN THE ACCURACY OF METEOROLOGICAL DROUGHT MAPS
    Yuan, S.
    Quiring, S. M.
    Patil, S.
    CUADERNOS DE INVESTIGACION GEOGRAFICA, 2016, 42 (01): : 167 - 183
  • [40] Long-term annual mapping and spatial-temporal dynamic analysis of winter wheat in Shandong Province based on spatial-temporal data fusion (2000-2022)
    Zhao, Jinchang
    Sun, Xiaofang
    Wang, Meng
    Li, Guicai
    Hou, Xuehui
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (09)